Acesrc and Travel(HDU6662+换根dp)
题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得 \(a_i,b_i\) (到达这个点时两个人都会获得)的权值,已经经过的点无法再次经过,直到无法移动则结束游戏,两人都想最大化自己的权值和减对手权值和,问先手减后手权值和最大是多少。 思路 换根 \(DP\) ,和求树的直径有点类似。 \(dp[i][j]\) 表示在 \(i\) 这个结点状态为 \(j\) 时先手权值和减后手权值和最优是多少, \(j\) 为偶数表示当前是先手,为奇数时为后手。 转移方程:我们该 \(dp\) 是倒着推的,也就是说从游戏结束开始往游戏开始推,假设当前是先手选择,那么下一步就是后手移动,按照题目要求后手一定是想最小化先手减后手权值和,因此当前一定是从最小的先手减后手权值和转移过来;如果当前是后手那么就从先手减后手权值和最大转移过来。 需要特别注意的两点是: 从子结点转移过来很好想,就是子结点中相反状态转移过来,也就是当前为先手那么从最小过来;从父亲结点转移过来的时候,因为一个结点只有一个父亲结点,因此如果当前是先手,那么父亲结点也就确定了,因此它要从父亲结点从其他结点转移过来的最大值转移到当前结点,后手同理(因为这里我卡了好久,好菜啊)。 最后枚举答案的时候如果当前点是叶子结点,那么它的答案是从父亲结点贡献的,不能由它自己贡献