【转载】 SLI导致双显卡被TensorFlow同时占用问题(Windows下) ---------- (windows环境下如何为tensorflow安装多个独立的消费级显卡)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https://blog.csdn.net/qq_21368481/article/details/81907244 ———————————————— 转载 注明: 突然想给自己的电脑上tensorflow环境下安装多独立显卡,网上搜索发现这篇文章,该篇文章主要是在windows环境下为tensorflow安装多个独立显卡。 本文逻辑: windows环境下安装多个独立显卡,如果不使用sli技术,则Windows不识别多个独立显卡,但是使用sli技术,则不能指定单独显卡为tensorflow进行计算,因为指定单独显卡后slave显卡的显存占用会和master显卡的显存占用进行同步,也就是即使指定了一个显卡参与运算但是另一个显卡的显存会随之同步变化,本文作者提出一个方法解决这个问题:Windows环境下两显卡进行物理桥接后在软件上关闭桥接功能,便可实现Windows环境下双显卡识别及单显卡指定运算。 原文如下: --------------------------------------- 最近学习TensorFlow,被一些不是bug的问题折腾的头晕脑胀,借此写一下解决方法。本人是在win10下使用TensorFlow的,所以ubuntu下的绕行吧,不会出现这些问题