(数论)数的计算
题目描述 Description 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1. 不作任何处理; 2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半; 3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止. 输入描述 Input Description 一个数n 输出描述 Output Description 满足条件的数的个数 样例输入 Sample Input 6 样例输出 Sample Output 6 数据范围及提示 Data Size & Hint 6个数分别是: 6 16 26 126 36 136 分析: 1. 本题难度看似不大,但如果用递归来做的话耗时非常大,因为需要重复计算的数据量太大了。当然我们也可以采取一边递归一边储存的方法,但计算量也还是不小,再进一步思考,实际上就是可以用如下的递推法来做; 2. 例如要求f(6),经过分析,我们知道:f(6)=f(1)+f(2)+f(3)+1,也就是说,f(6)的答案数量是在它之前可以取的所有自然数的答案数量之和(6之前可以取1,2,3三个自然数),最后加1是指数字6本身也是一个答案; 3. 所以,我们可以知道f(n)=f(1)+f(2)+......f(trunc(n/2))+1; 4. 因此,要求f(n)