AcWing 878 线性同余方程
题目描述: 给定n组数据ai,bi,mi,对于每组数求出一个xi,使其满足ai∗xi≡bi(mod mi),如果无解则输出impossible。 输入格式 第一行包含整数n。接下来n行,每行包含一组数据ai,bi,mi。 输出格式 输出共n行,每组数据输出一个整数表示一个满足条件的xi,如果无解则输出impossible。 每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。 输出答案必须在int范围之内。 数据范围 1≤n≤10^5,1≤ai,bi,mi≤2∗10^9 输入样例: 2 2 3 6 4 3 5 输出样例: impossible 7 分析: a∗x≡b(mod m)等价于ax - my' = b,令y = -y',得到ax + my = b,便可以使用扩展欧几里得算法进行求解了。当gcd(a,m) | b时,该线性同余方程有解,否则无解。我们只需先求解ax + my = gcd(a,m)的解,然后对系数x和y扩大b / gcd(a,m)倍即可得到方程ax + my = b的解了。 更一般的,ax+by =c的特解为x0,y0,d=gcd(a,b),则方程的通解为x = x0 + kb/d,y = y0 - ka/d。k为任意整数,这是因为想要在x中加上的参数乘上a后与另一项参数乘以b后抵消,即a(x+z1)+b(y-z2)=c,可以得到az1=bz2