python核心编程:七分钟全面了解位运算

醉酒当歌 提交于 2020-02-03 04:05:44

位运算是我们在编程中常会遇到的操作,但仍然有很多开发者并不了解位运算,这就导致在遇到位运算时会“打退堂鼓”。实际上,位运算并没有那么复杂,只要我们了解其运算基础和运算符的运算规则,就能够掌握位运算的知识。接下来,我们一起学习位运算的相关知识


程序中的数在计算机内存中都是以二进制的形式存在的,位运算就是直接对整数在内存中对应的二进制位进行操作。

位运算的基础

我们常用的 3, 5 等数字是十进制表示,而位运算的基础是二进制。即人类采用十进制,机器采用的是二进制,要深入了解位运算,就需要了解十进制和二进制的转换方法和对应关系。

二进制

十进制转二进制时,采用“除 2 取余,逆序排列”法:

用 2 整除十进制数,得到商和余数;
再用 2 整除商,得到新的商和余数;
重复第 1 和第 2 步,直到商为 0;
将先得到的余数作为二进制数的高位,后得到的余数作为二进制数的低位,依次排序;
排序结果就是该十进制数的二进制表示。例如十进制数 101 转换为二进制数的计算过程如下:
在这里插入图片描述
逆序排列即二进制中的从高位到低位排序,得到 7 位二进制数为 1100101,如果要转换为 8 位二进制数,就需要在最高位补 0。即十进制数的 8 位二进制数为 01100101。

其完整过程如下图所示:

有网友整理了常见的进制与 ASCII 码对照表,表内容如下:
ASCII 控制字符
ASCII 可显示字符

补码

现在,我们已经了解到二进制与十进制的换算方法,并拥有了进制对照表。但在开始学习位运算符之前,我们还需要了解补码的知识。
数值有正负之分,那么仅有 0 和 1 的二进制如何表示正负呢?
人们设定,二进制中最高位为 0 代表正,为 1 则代表负。例如 0000 1100 对应的十进制为 12,而 1000 1100 对应的十进制为 -12。这种表示被称作原码。但新的问题出现了,原本二进制的最高位始终为 0,为了表示正负又多出了 1,在执行运算时就会出错。举个例子,1 + (-2) 的二进制运算如下:
在这里插入图片描述
这显然是有问题的,问题就处在这个代表正负的最高位。接着,人们又弄出了反码(二进制各位置的 0 与 1 互换,例如 0000 1100 的反码为 1111 0011)。此时,运算就会变成这样:在这里插入图片描述
这次好像正确了。但它仍然有例外,我们来看一下 1 + (-1):
在这里插入图片描述
零是没有正负之分的,为了解决这个问题,就搞出了补码的概念。补码是为了让负数变成能够加的正数,所以 负数的补码= 负数的绝对值取反 + 1,例如 -1 的补码为:
在这里插入图片描述
-1 补码推导的完整过程如下图所示:
反过来,由补码推导原码的过程为 原码 = 补码 - 1,再求反。要注意的是,反码过程中,最高位的值不变,这样才能够保证结果的正负不会出错。例如 1 + (-6) 和 1 + (-9) 的运算过程如下:
在这里插入图片描述
在这里插入图片描述
要注意的是,正数的补码与原码相同,不需要额外运算。也可以说,补码的出现就是为了解决负数运算时的符号问题
运算符介绍
位运算分为 6 种,它们是
在这里插入图片描述

按位与

按位与运算将参与运算的两数对应的二进制位相与,当对应的二进制位均为 1 时,结果位为 1,否则结果位为 0。按位与运算的运算符为 &,参与运算的数以补码方式出现。举个例子,将数字 5 和数字 8 进行按位与运算,其实是将数字 5 对应的二进制 0000 0101 和数字 8 对应的二进制 0000 1000 进行按位与运算,即:
在这里插入图片描述
根据按位与的规则,将各个位置的数进行比对。运算过程如下:
在这里插入图片描述
由于它们对应位置中没有“均为 1 ”的情况,所以得到的结果是 0000 0000。数字 5 和 8 按位与运算的完整过程如下图:
将结果换算成十进制,得到 0,即 5&8 = 0。
按位或
按位或运算将参与运算的两数对应的二进制位相或,只要对应的二进制位中有 1,结果位为 1,否则结果位为 0。按位或运算的运算符为 |,参与运算的数以补码方式出现。举个例子,将数字 3 和数字 7 进行按位或运算,其实是将数字 3 对应的二进制 0000 0011和数字 7 对应的二进制 0000 0111 进行按位或运算,即:在这里插入图片描述
根据按位或的规则,将各个位置的数进行比对。运算过程如下:
在这里插入图片描述
最终得到的结果为 0000 0111。将结果换算成十进制,得到 7,即 3|7 = 7。

按位异或
按位异或运算将参与运算的两数对应的二进制位相异或,当对应的二进制位值不同时,结果位为 1,否则结果位为 0。按位异或的运算符为 ^,参与运算的数以补码方式出现。举个例子,将数字 12 和数字 7 进行按位异或运算,其实是将数字 12 对应的二进制 0000 1100 和数字 7 对应的二进制 0000 0111 进行按位异或运算,即:
在这里插入图片描述
根据按位异或的规则,将各个位置的数进行比对。运算过程如下:
在这里插入图片描述
最终得到的结果为 0000 1011。将结果换算成十进制,得到 11,即 12^7 = 11。

按位取反

按位取反运算将二进制数的每一个位上面的 0 换成 1,1 换成 0。按位取反的运算符为 ~,参与运算的数以补码方式出现。举个例子,对数字 9 进行按位取反运算,其实是将数字 9 对应的二进制 0000 1001 进行按位取反运算,即:
在这里插入图片描述
最终得到的结果为 -10。再来看一个例子,-20 按位取反的过程如下:
在这里插入图片描述
最终得到的结果为 19。我们从示例中找到了规律,按位取反的结果用数学公式表示:
在这里插入图片描述

我们可以将其套用在 9 和 -20 上:
在这里插入图片描述
这个规律也可以作用于数字 0 上,即 ~0 = -(0 + 1) = -1。

左移运算

左移运算将数对应的二进位全部向左移动若干位,高位丢弃,低位补 0。左移运算的运算符为 <<。举个例子,将数字 5 左移 4 位,其实是将数字 5 对应的二进制 0000 0101 中的二进位向左移动 4 位,即:
在这里插入图片描述
数字 5 左移 4 位的完整运算过程如下图:

最终结果为 80。这等效于:
$$
5 (2) ^4
在这里插入图片描述

右移运算

右移运算将数对应的二进位全部向右移动若干位。对于左边的空位,如果是正数则补 0,负数可能补 0 或 1 (Turbo C 和很多编译器选择补 1)。右移运算的运算符为 >>。举个例子,将数字 80 右移 4 位,其实是将数字 80 对应的二进制 0101 0000 中的二进位向右移动 4 位,即:
在这里插入图片描述
最终结果为 5。这等效于:
在这里插入图片描述
也就是说,右移运算的规律为:
在这里插入图片描述
要注意的是,不能整除时,取整数。这中除法取整的规则类似于 PYTHON 语言中的地板除。

人生苦短,我用python,给大家推荐一个企鹅学群:913###066@@@266,里面有很多学习资料

位运算的应用

在掌握了位运算的知识后,我们可以在开发中尝试使用它。坊间一直流传着位运算的效率高,速度快,但从未见过文献证明,所以本文不讨论效率和速度的问题。如果正在阅读文章的你有相关文献,请留言告知,谢谢。

判断数字奇偶

通常,我们会通过取余来判断数字是奇数还是偶数。例如判断 101 的奇偶用的方法是:
在这里插入图片描述
我们也可以通过位运算中的按位与来实现奇偶判断,例如:
在这里插入图片描述
这是因为奇数的二进制最低位始终为 1,而偶数的二进制最低为始终为 0。所以,无论任何奇数与 1 即 0000 0001 相与得到的都是 1,任何偶数与其相与得到的都是 0。

变量交换

在 C 语言中,两个变量的交换必须通过第三个变量来实现。伪代码如下:
在这里插入图片描述
在 PYTHON 语言中并没有这么麻烦,可以直接交换。对应的 PYTHON 代码如下:
在这里插入图片描述
代码运行结果为 5 3。但大部分编程语言都不支持 PYTHON 这种写法,在这种情况下我们可以通过位运算中的按位异或来实现变量的交换。对应的伪代码如下:
在这里插入图片描述
最后,a = 5, b = 3。我们可以用 C 语言和 PYTHON 语言进行验证,对应的 PYTHON 代码如下:
在这里插入图片描述
代码运行结果为 5 3,说明变量交换成功。对应的 C 代码如下:
在这里插入图片描述
代码运行结果如下:
在这里插入图片描述
这说明变量交换成功。

求 x 与 2 的 n 次方乘积

设一个数为 x,求 x 与 2 的 n 次方乘积。这用数学来计算都是非常简单的:
在这里插入图片描述
在位运算中,要实现这个需求只需要用到左移运算,即 x << n。

取 x 的第 k 位

即取数字 x 对应的二进制的第 k 位上的二进制值。假设数字为 5,其对应的二进制为 0000 0101,取第 k 位二进制值的位运算为 x >> k & 1。我们可以用 PYTHON 代码进行验证:在这里插入图片描述
代码运行结果如下:
在这里插入图片描述
这说明位运算的算法是正确的,可以满足我们的需求。

判断赋值在这里插入图片描述
等效于 x = a ^ b ^ x。我们可以通过 PYTHON 代码来验证:
在这里插入图片描述
代码运行结果为 699,与之等效的代码如下:
在这里插入图片描述
这样就省去了 if else 的判断语句。

代替地板除

二分查找是最常用的算法之一,但它有一定的前提条件:二分查找的目标必须采用顺序存储结构,且元素有序排列。例如 PYTHON 中的有序列表。二分查找的最优复杂度为 O(1),最差时间复杂度为 O(log n)。举个例子,假设我们需要从列表 [1, 3, 5, 6, 7, 8, 12, 22, 23, 43, 65, 76, 90, 543] 中找到指定元素的下标,对应的 PYTHON 代码如下:

# python
def search(lis: list, x: int) -> int:
    """非递归二分查找
    返回指定元素在列表中的索引
    -1 代表不存在"""
    mix_index = 0
    max_index = len(lis) - 1
    while mix_index <= max_index:
        midpoint = (mix_index + max_index) // 2
        if lis[midpoint] < x:
            mix_index = mix_index + 1
        elif lis[midpoint] > x:
            max_index = max_index - 1
        else:
            return midpoint
    return -1
 
lists = [1, 3, 5, 6, 7, 8, 12, 22, 23, 43, 65, 76, 90, 543]
res = search(lists, 76)
print(res)

在取列表中间值时使用的语句是 midpoint = (mix_index + max_index) // 2,即地板除,我们可以将其替换为 midpoint = (mix_index + max_index) >> 1 最终得到的结果是相同的。这是因为左移 1位 等效于乘以 2,而右移 1 位等效于除以 2。这样的案例还有很多,此处不再赘述。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!