Fisher Vector费舍尔向量and FIsher Kernel费舍尔核
之前想了解Fisher Vector(以下简称FV)和 Fisher Kernel(以下简称FK) ,花了很长时间查论文看博客,总算明白了点皮毛,为了以后自己能够记得起来,决定用自己能懂的话码出来。 1、FV的优点 FV和 广泛应用于图像分类、行为识别领域。为什么会广泛应用?肯定是因为FV有别的算法不具备的优点。什么有点呢?下面教科书一般的说明如下: 模式识别方法可以分为生成式方法和判别式方法。生成式注重对类条件概率密度函数的建模,主要反映同类数据之间的相似度,如GMM ;判别式聚焦于直接分类,反映异类数据之间的差异,如SVM 。 二者的优势:1,生成式方法可以处理长度不一的输入数据,2,判别式方法不能处理长度不一的数据但是分类效果较好。 而FV则主要结合两者优势,将生成式模型用于判别式分类器中,这就是FV的优势,那么FV如何拥有这样的优势呢?分析如下: 2、FV的推导 算法的推导过程都很繁复,但是FV的推导真心不算难,仔细学习下,一两天内可以看的很明白,不过知其然未必知其所以然,至于FV是这样推导的没错,但为什么这么推导,现在为止我也没有清晰的认识,反正就是先学着吧。 【样本的处理】 FV本质上是用似然函数的梯度向量来表达一幅图像。这个梯度向量的物理意义就是数据拟合中对参数调优的过程。似然函数是哪里来的呢? (似然函数: 一种关于统计模型参数的函数。给定输出x时