How to interpret results of h2o.predict

故事扮演 提交于 2019-12-11 04:43:53

问题


After running h2o.deeplearning for a binary classification problem I then run the h2o.predict and obtain the following results

  predict        No       Yes
1      No 0.9784425 0.0215575
2     Yes 0.4667428 0.5332572
3     Yes 0.3955087 0.6044913
4     Yes 0.7962034 0.2037966
5     Yes 0.7413591 0.2586409
6     Yes 0.6800801 0.3199199

I was hoping to get a confusion matrix with only two rows. But this seems to be quite different. How do I interpret these results? Is there any way of getting something like a confusion matrix with actual and predicted values and error percentage?


回答1:


You can either extract that information from the model fit (for example, if you pass a validation_frame), or you can use h2o.performance() to get obtain a H2OBinomialModel performance object and extract the confusion matrix using h2o.confusionMatrix().

Example:

fit <- h2o.deeplearning(x, y, training_frame = train, validation_frame = valid, ...)
h2o.confusionMatrix(fit, valid = TRUE)

Or

fit <- h2o.deeplearning(x, y, train, ...)
perf <- h2o.performance(fit, test)
h2o.confusionMatrix(perf)


来源:https://stackoverflow.com/questions/41075416/how-to-interpret-results-of-h2o-predict

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!