machine-learning

Items of feature_columns must be a _FeatureColumn

心已入冬 提交于 2021-02-20 12:01:13
问题 I am getting this error: ValueError: Items of feature_columns must be a _FeatureColumn. Given (type ): Index(['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited'], dtype='object'). I am using tensorFlow lib. I want to get prediction results but I can not run m.train(input_fn=get_input_fn ,steps=5000) code. I always got the same error whatever I did. I used these input functions in the following but nothing changed. def input

YOLO Annotation Files for Already-Cropped Images

此生再无相见时 提交于 2021-02-20 05:15:06
问题 I'm attempting to create my own dataset for use with YOLO (You Only Look Once). Initially, I started with a large geotiff file that had pictures of landscape and animals. I was able to write a script to extract the images of the animals into separate files. I'm now at a point where I'd like to use those animal images as part of a YOLO dataset. However, all of the examples I've seen online utilize annotation files, which denote the location of an object-to-be-detected within a larger image. In

Errors when training my saved tensorflow model

与世无争的帅哥 提交于 2021-02-20 05:14:28
问题 I'm trying to build a custom keras model whith the subclassing API but I get some errors when I load a previous instance of my model and I try to train it : Here is the class of my model, it has 3 inputs and 1 output : import tensorflow as tf spec1 = tf.TensorSpec(shape=(1,40,5,1)) spec2 = tf.TensorSpec(shape=(1,3)) class Conv_Rnn_model(tf.keras.Model): def __init__(self): # super() permet d'appeler le constructeur de la classe mère dans la classe fille # permet égalemet de résoudre le

Errors when training my saved tensorflow model

∥☆過路亽.° 提交于 2021-02-20 05:14:25
问题 I'm trying to build a custom keras model whith the subclassing API but I get some errors when I load a previous instance of my model and I try to train it : Here is the class of my model, it has 3 inputs and 1 output : import tensorflow as tf spec1 = tf.TensorSpec(shape=(1,40,5,1)) spec2 = tf.TensorSpec(shape=(1,3)) class Conv_Rnn_model(tf.keras.Model): def __init__(self): # super() permet d'appeler le constructeur de la classe mère dans la classe fille # permet égalemet de résoudre le

Errors when training my saved tensorflow model

两盒软妹~` 提交于 2021-02-20 05:12:51
问题 I'm trying to build a custom keras model whith the subclassing API but I get some errors when I load a previous instance of my model and I try to train it : Here is the class of my model, it has 3 inputs and 1 output : import tensorflow as tf spec1 = tf.TensorSpec(shape=(1,40,5,1)) spec2 = tf.TensorSpec(shape=(1,3)) class Conv_Rnn_model(tf.keras.Model): def __init__(self): # super() permet d'appeler le constructeur de la classe mère dans la classe fille # permet égalemet de résoudre le

Errors when training my saved tensorflow model

浪尽此生 提交于 2021-02-20 05:12:42
问题 I'm trying to build a custom keras model whith the subclassing API but I get some errors when I load a previous instance of my model and I try to train it : Here is the class of my model, it has 3 inputs and 1 output : import tensorflow as tf spec1 = tf.TensorSpec(shape=(1,40,5,1)) spec2 = tf.TensorSpec(shape=(1,3)) class Conv_Rnn_model(tf.keras.Model): def __init__(self): # super() permet d'appeler le constructeur de la classe mère dans la classe fille # permet égalemet de résoudre le

plot dataset and labels over multiple rows (jupyter notebook)

与世无争的帅哥 提交于 2021-02-20 05:02:14
问题 I have the following code below which simply plots datasets (consisting of dogs and cats images) and their labels. I'm using jupyter notebook: train_path = 'dataset/train' valid_path = 'dataset/valid' test_path = 'dataset/test' train_batches = ImageDataGenerator().flow_from_directory(train_path, target_size=(224,224), classes=['dog', 'cat'], batch_size=10) valid_batches = ImageDataGenerator().flow_from_directory(valid_path, target_size=(224,224), classes=['dog', 'cat'], batch_size=4) test

Compare tf.string and python string

本秂侑毒 提交于 2021-02-20 03:49:41
问题 How can I compare a Tensorflow string tensor to a python string type. I tried something like this if(tf.constant("neg",tf.string) in key): a=True key here, is a tf.string. I want to see if 'neg' is in the key tensor. 回答1: Unfortunately, currently you cannot. Please ask this on TF github in issues section. 来源: https://stackoverflow.com/questions/35946810/compare-tf-string-and-python-string

Compare tf.string and python string

≯℡__Kan透↙ 提交于 2021-02-20 03:43:45
问题 How can I compare a Tensorflow string tensor to a python string type. I tried something like this if(tf.constant("neg",tf.string) in key): a=True key here, is a tf.string. I want to see if 'neg' is in the key tensor. 回答1: Unfortunately, currently you cannot. Please ask this on TF github in issues section. 来源: https://stackoverflow.com/questions/35946810/compare-tf-string-and-python-string

Performance Analysis of Clustering Algorithms

前提是你 提交于 2021-02-19 23:39:17
问题 I have been given 2 data sets and want to perform cluster analysis for the sets using KNIME. Once I have completed the clustering, I wish to carry out a performance comparison of 2 different clustering algorithms. With regard to performance analysis of clustering algorithms, would this be a measure of time (algorithm time complexity and the time taken to perform the clustering of the data etc) or the validity of the output of the clusters? (or both) Is there any other angle one look at to