行列式

[蓝桥杯] 练习系统-算法提高-ADV-292 【计算行列式】之10分钟AC Apare_xzc

和自甴很熟 提交于 2020-01-07 11:57:48
[蓝桥杯] 练习系统-算法提高-ADV-292 【计算行列式】之10分钟AC Apare_xzc 不多说,最喜欢的n阶行列式,大一上写线性代数系统的时候就实现了 题目链接 <— 题面: 我的AC代码: # include <bits/stdc++.h> using namespace std ; int arr [ 8 ] [ 8 ] ; int getDet ( int a [ 8 ] [ 8 ] , int n ) ; //计算n阶行列式 int main ( ) { int n ; while ( cin >> n ) { for ( int i = 0 ; i < n ; ++ i ) for ( int j = 0 ; j < n ; ++ j ) scanf ( "%d" , & arr [ i ] [ j ] ) ; printf ( "%d\n" , getDet ( arr , n ) ) ; } return 0 ; } int getDet ( int a [ 8 ] [ 8 ] , int n ) { if ( n == 1 ) return a [ 0 ] [ 0 ] ; if ( n == 2 ) return a [ 0 ] [ 0 ] * a [ 1 ] [ 1 ] - a [ 0 ] [ 1 ] * a [ 1 ] [ 0 ] ; int ans

线性代数---特征值与特征向量(***重要***)

心已入冬 提交于 2020-01-07 07:46:08
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 怎么求特征值和特征向量? 实例: ξ是初始单位向量组 A是旋转矩阵。 基本性质: 非奇异也叫做满秩,非退化,可逆 矩阵的行列式与矩阵行列式的转置是一样的 最后结果得出:特征方程一样,则特征值一样。 运用根与系数关系公式直接套就可以。 迹-----所有的对角线元素都加起来。 例题: 方法一:如果不验证有可能不正确,不够严谨。 通过方法二可知等于1这个条件是多余的。 来源: oschina 链接: https://my.oschina.net/u/2914586/blog/783856

猪猪的机器学习笔记(三)矩阵和线性代数

随声附和 提交于 2020-01-05 22:14:10
矩阵和线性代数 作者:樱花猪 摘要: 本文为七月算法( julyedu.com ) 12 月机器学习第三次课在线笔记。 矩阵和线性代数在图像处理中运用的非常多,同样地,在机器学习某种事件特征我们常常会描绘成特征向量,那么矩阵的运算和理论方法都必将会应用进来。如果说,概率论提供了机器学习的思维方法,那么矩阵论则是机器学习公式推导和计算机计算的桥梁。本节课内容虽然知识点不多但都非常的重要,是我们日后能够看懂和实际编程的基石。 引言: 本文课题命名矩阵和线性代数但是内容实际上远远超出线性代数的范围,感叹邹博强大的理论基础把许多发杂的理论都简单化了,于是即使只在本科混了几节线性代数也能够无压力的上完这节课。 本文将按照上课的顺序,首先接着上次课再次细致的一下统计量的无偏性,接着再正式进入矩阵论的内容。在矩阵论部分,首先从矩阵的乘法规则来引出状态转移矩阵意义。接下来我们讨论了矩阵的特征值和向量,并介绍了对称阵、正交阵、正定阵等。最后介绍了一下矩阵求导的方法,这部分虽然没有技术难点但在平日操作中总是模糊不清需要强化记忆。 预备知识: 矩阵论 统计量的无偏性 无偏性;均方误差准则 MSE 线性代数: 代数余子式;伴随矩阵;方阵的逆; 概率转移矩阵;正交阵;特征值和特征向量;合同变换;正定阵; 矩阵与导数: 向量偏导公式;标量对向量的导数;标量对方阵的导数; 一、 统计量的无偏性 1.1 无偏性

线性代数基础知识(三)—— 矩阵乘法

谁说胖子不能爱 提交于 2020-01-05 22:13:13
矩阵 A ∈ R m × n 和 B ∈ R n × p 的乘积为矩阵 : 其中: . 请注意,矩阵A的列数应该与矩阵B的行数相等,这样才存在矩阵的乘积。有很多种方式可以帮助我们理解矩阵乘法,这里我们将通过一些例子开始学习。 2.1 向量的乘积 给定两个向量x,y ∈ R n ,那么x T y的值,我们称之为向量的 内积 或 点积。它 是一个由下式得到的实数: . 可以发现,内积实际上是矩阵乘法的一个特例。通常情况下x T y = y T x。 对于向量x ∈ R m , y ∈ R n (大小不必相同),xy T ∈ R m×n 称为向量的 外积 。外积是一个矩阵,其中中的每个元素,都可以由 得到,也就是说, . 我们举个例子说明外积有什么用。令 1 ∈ R n 表示所有元素都是1的n维向量,然后将矩阵 A ∈ R m × n 的每一列都用列向量 x ∈ R m 表示。使用外积,我们可以将A简洁的表示为: . 2.2 矩阵 - 向量的乘积 对于一个矩阵 A ∈ R m × n 和向量 x ∈ R n ,他们的乘积为向量 y = Ax ∈ R m 。理解矩阵向量乘法的方式有很多种,我们一起来逐一看看。 以行的形式书写A,我们可以将其表示为Ax的形式: . 也就是说, y 第 i 行的元素等于A的第 i 行与x的内积 . 咱们换个角度,以列的形式表示A,我们可以看到: . 换言之,

shader_线性代数复习提纲

╄→гoц情女王★ 提交于 2020-01-05 22:06:42
MIT线代教程 http://open.163.com/movie/2010/11/7/3/M6V0BQC4M_M6V29E773.html 《转载》 《线性代数》复习提纲 第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。  (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;  (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法  定理:n阶行列式的值等于它的任意一行(列

奇异矩阵

十年热恋 提交于 2019-12-30 04:15:54
奇异矩阵是线形代数的概念,就是对应的行列式等于0的矩阵。 奇异矩阵的判断方法:首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。 然后,再看此方阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。 同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。 对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA = I(I 是单位矩阵),则 A 为非奇异矩阵。 一个矩阵非奇异当且仅当它的行列式不为零。 一个矩阵非奇异当且仅当它代表的线性变换是个自同构。 一个矩阵半正定当且仅当它的每个特征值大于或等于零。 一个矩阵正定当且仅当它的每个特征值都大于零。 求行列式的值 行列式的计算 一 化成三角形行列式法 先把行列式的某一行(列)全部化为 1 ,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点: 1 各行元素之和相等; 2 各列元素除一个以外也相等。 充分利用行列式的特点化简行列式是很重要的。 二 降阶法 根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。 三 拆成行列式之和(积)

矩阵论

自古美人都是妖i 提交于 2019-12-28 15:47:50
矩阵论 矩阵论札记. 梁昌洪 . 2014学习概要 文章目录 矩阵论 第1部分 线性基础 第2部分 矩阵代数 第3部分 线性方程组 第4部分 矩阵空间 第5部分 本征问题与二次型 第6部分 矩阵变换 第7部分 矩阵应用 第1部分 线性基础 矩阵3大特点 : 矩阵是线性的 矩阵是离散的 矩阵是代数和几何交融的 行列式 n n n 阶 行列式 D D D 的值为 D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ t = 0 n ! ( − 1 ) t a 1 p 1 a 2 p 2 ⋯ a n p n D = \left| \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & &\vdots \\ a_{n1} & a_{n2} & \cdots &a_{nn} \end{matrix} \right | = \sum_{t=0}^{n!} (-1)^ta_{1p_1}a_{2p_2}\cdots a_{np_n} D = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ​ a 1 1 ​ a 2 1 ​ ⋮ a n 1 ​ ​ a 1 2 ​

行列式

时光毁灭记忆、已成空白 提交于 2019-12-21 02:20:03
1. det($\mathbf{I}$) = 1 2. 交换行列式的行,行列式符号变换。 即,置换矩阵 det($\mathbf{P}$)=1 或 -1 并且,行列式的置换是区分奇偶的,奇数次变换只能通过奇数次变换等价,而不能通过偶数次变换得到。 3. a. 一个数乘以行列式的一行,结果等于乘以行列式的值。 $\begin{vmatrix} ta & tb \\ c & d \end{vmatrix}$= t $\begin{vmatrix}a & b \\ c & d\end{vmatrix}$ b.det(A+B) $\ne$ det(a) +det(B),但是,行列式的每一行是线性的,即 $\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix}$= $\begin{vmatrix}a & b \\ c & d\end{vmatrix}$ + $\begin{vmatrix}a' & b' \\ c & d\end{vmatrix}$ 4. 有两行相等的行列式为0 5. 含有行为0的行列式为0 6. 一行减去另一行的倍数,行列式不变。 $\begin{vmatrix}a & b \\ c-la & d-lb\end{vmatrix}$ = $\begin{vmatrix}a & b \\ c & d\end{vmatrix}$ +

线性代数矩阵论——行列式的一些性质推论及Cramer法则

爷,独闯天下 提交于 2019-12-20 02:29:16
行列式的性质及推论 1. 对角行列式的值为主对角线上元素的乘积 2. 辅对角行列式的值 3. 上三角和下三角行列式的值为主对角线上元素的乘积 4. 若行列式的某一行(列)的元素皆为零,则行列式的值为零 5. 交换行列式两行(列)元素的位置,行列式反号 6. 若行列式有两行(列)元素相同,则行列式的值为零 7. 将行列式转置,行列式的值不变,即 8. 若行列式有两行(列)元素对应成比例,则行列式的值为零 9. 行列式的某一行(列)中所有元素都乘以同一数,等于用数乘此行列式 10. 设A,B为n阶方阵 11. 若行列式中某一行(列)元素 都可表示为两元素 与 之和,即 ,则该行列式可表示为两行列式之和。(可以推广到m个数之和的情况) 12. 把行列式的某一行(列)的所有元素同乘以数k后加于另一行(列)对应位置的元素上,行列式的值不变 13. 奇数阶但对称行列式的值为零 14. 范德蒙德(Vandermonde)行列式 对于 方程个数与未知量个数相等 的线性方程组 Cramer 法则: 若方程组的系数行列式 ,则方程组有唯一解 如果线性方程组的系数行列式 ,则有唯一解; 如果线性方程组的系数行列式 ,则无解或多个解; 从目前来看行列式的意义,主要体现在Cramer法则中,用来确定(方程个数与未知量个数相等)线性方程组的解(唯一解、多个解或无解),并求取参数值。 但更为普适的方法