线性代数基础知识(三)—— 矩阵乘法
矩阵 A ∈ R m × n 和 B ∈ R n × p 的乘积为矩阵 : 其中: . 请注意,矩阵A的列数应该与矩阵B的行数相等,这样才存在矩阵的乘积。有很多种方式可以帮助我们理解矩阵乘法,这里我们将通过一些例子开始学习。 2.1 向量的乘积 给定两个向量x,y ∈ R n ,那么x T y的值,我们称之为向量的 内积 或 点积。它 是一个由下式得到的实数: . 可以发现,内积实际上是矩阵乘法的一个特例。通常情况下x T y = y T x。 对于向量x ∈ R m , y ∈ R n (大小不必相同),xy T ∈ R m×n 称为向量的 外积 。外积是一个矩阵,其中中的每个元素,都可以由 得到,也就是说, . 我们举个例子说明外积有什么用。令 1 ∈ R n 表示所有元素都是1的n维向量,然后将矩阵 A ∈ R m × n 的每一列都用列向量 x ∈ R m 表示。使用外积,我们可以将A简洁的表示为: . 2.2 矩阵 - 向量的乘积 对于一个矩阵 A ∈ R m × n 和向量 x ∈ R n ,他们的乘积为向量 y = Ax ∈ R m 。理解矩阵向量乘法的方式有很多种,我们一起来逐一看看。 以行的形式书写A,我们可以将其表示为Ax的形式: . 也就是说, y 第 i 行的元素等于A的第 i 行与x的内积 . 咱们换个角度,以列的形式表示A,我们可以看到: . 换言之,