ransac

RANSAC

我的未来我决定 提交于 2019-12-01 21:39:27
原文链接 RANSAC简介 RANSAC是 RANdom SAmple Consensus 的缩写,中文翻译叫随机采样一致。它可以从一组观测数据中,找出符合某些数学模型的样本集,并且估计出这个数学模型的参数。举个例子,如下图所示,这些点是观测数据,给定的数学模型是圆形和直线,我们想从这些观测数据中找出圆形和直线,并且估计出它们的几何参数。 RANSAC算法 下面介绍一下RANSAC算法: 输入:观测数据data,数学模型models;输出是匹配data的数学模型match_models和对应的样本集sub_data 1. 随机采样data中的一些样本sub_data 2. 用数学模型match_model去匹配样本集sub_data,估计出数学模型的参数 3. 评价估计出来的match_model,如果可以接受,则把它放入match_models,并且从原始观测数据中剔除对应的样本集sub_data 4. 迭代步骤1-3,直到估计出了所有的数学模型,或者迭代次数到了最大值 RANSAC算法是一类模式识别方法的框架,算法步骤里的具体内容是需要根据实际情况来实例化的。 三维点云基本图元检测 下面我们介绍一个RANSAC算法的应用,检测三维点云的基本图元。基本图元包括:平面,球面,圆柱面和圆锥面。如下图所示,红色-平面;绿色-圆柱面;黄色-球面;蓝色-圆锥面。 输入:三维点云

Keypoint Descriptor Matching: How to calculate a goodness-of-fit per template?

梦想的初衷 提交于 2019-12-01 11:43:35
问题 I am not sure whether this belongs on stackoverflow or another stackexchange site - input very welcome here. I have used python OpenCV to match a target image's BRISK keypoint descriptors to - in turn - three different templates. What is a practical, robust, statistically-sound way to decide which template is the best-fitting one? Right now I calculate the number of cv2.RANSAC inliers returned by cv2.findHomography (which incidentally doesn't return a goodness-of-fit statistic) and take the

OpenCV C++ findHomography mask values meaning

人走茶凉 提交于 2019-11-30 07:25:58
I am using the function findHomography of OpenCV with the RANSAC method in order to find the homography that relates two images linked with a set of keypoints. Main issue is that I haven’t been able to find anywhere yet what are the values of the mask matrix that the function outputs. Only information that I know is that 0 values are outliers, and non zero values are inliers. But what does it mean the inliers value? Anyone knows? Thanks in advance! Piece of code where I call findHomography : cv::Mat H12; cv::Mat mask; H12 = cv::findHomography(FvPointsIm1, FvPointsIm2, mask, CV_RANSAC, 5); ui-

OpenCV: How to get inlier points using findHomography()/findFundamental() and RANSAC

为君一笑 提交于 2019-11-30 06:56:18
OpenCV does not provide a RANSAC-function per se or at least in such a form that you can just call it and be done with it (e.g. cv::ransac(...) ). All functions/methods that are able to use RANSAC have a flag that enables it. However this is not always useful if you actually want to do something else with the inliers RANSAC computes after you have estimated a homography/fundamental matrix for example create a nice plot in Octave or similar software/library of the points, apply additional algorithms on the remaining set of filtered matches etc. After matching two images one gets a vector of

ransac 算法原理介绍与实现

 ̄綄美尐妖づ 提交于 2019-11-29 23:29:57
ransac是RANdom SAmple Consensus的简称,它是根据一组包含异常数据的样本数据集,通过迭代的方法计算出数据的数学模型参数,得到有效样本数据的非确定性的算法。它于1981年由 Fischler和Bolles最先提出。 对于RANSAC算法有一个基本的假设:样本中包含正确数据(inliers,符合模型的数据)和异常数据(Outliers,不符合模型的数据),即数据集中含有噪声。这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产生的。同时RANSAC也假设, 给定一组正确的数据,存在可以计算出符合这些数据的模型参数的方法。 下面是WIKI上一个,也是一个比较经典的例子:平面直线的匹配。 左边是数据集,右边是通过RANSAC算法拟合的直线。 利用C实现 void Ransac(IplImage *pload,IplImage *pnew,int *x_cord,int *y_cord,int length, double &c0,double &c1,double &c2,char *file_name_prefix2,int nums,int &min) { int *count = new int[RANSAC_TIMES]; //计数 memset(count,0x00,sizeof(int)*RANSAC_TIMES); CvMat mat_x,

OpenCV: How to get inlier points using findHomography()/findFundamental() and RANSAC

♀尐吖头ヾ 提交于 2019-11-29 08:11:45
问题 OpenCV does not provide a RANSAC-function per se or at least in such a form that you can just call it and be done with it (e.g. cv::ransac(...) ). All functions/methods that are able to use RANSAC have a flag that enables it. However this is not always useful if you actually want to do something else with the inliers RANSAC computes after you have estimated a homography/fundamental matrix for example create a nice plot in Octave or similar software/library of the points, apply additional

RANSAC-like implementation for arbitrary 2D sets

久未见 提交于 2019-11-29 06:46:01
TL;DR : Is there a C++ implementation of RANSAC or other robust correspondence algorithms that is freely usable with arbitrary 2D point sets? I know that many implementations exist that include or make use of correspondence algorithms such as RANSAC (Random Sampling Consensus). They are often used in computer vision applications and found in libraries such as OpenCV , PCL , etc. The general algorithm is well known and various site lists the different steps. Now, all the "advanced" implementations (done for OpenCV, PCL, etc.) I have found are for specific types of problem with an underlying set

PCL1.8.1 采样一致性算法 RANSAC

扶醉桌前 提交于 2019-11-28 22:58:28
采样一致性算法主要是拟合点云中的平面、直线、圆等参数模型。 http://pointclouds.org/documentation/tutorials/random_sample_consensus.php#random-sample-consensus 平面拟合 将远离平面0.01米的点剔除掉 #include <pcl/sample_consensus/ransac.h> #include <pcl/sample_consensus/sac_model_plane.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr final(new pcl::PointCloud<pcl::PointXYZ>); //创建一个平面模型 pcl::SampleConsensusModelPlane<pcl::PointXYZ>::Ptr model_p(new pcl::SampleConsensusModelPlane<pcl::PointXYZ>(cloud)); //用于保存拟合后的点的索引 std::vector<int> inliers; //创建随机采样一致性算法 pcl:

RANSAC简史

扶醉桌前 提交于 2019-11-28 20:31:50
前言 在进行泡泡机器人【图灵智库】栏目的翻译的过程中,我发现在2018-2019的顶会中,依然有很多文章(我看到的不少于6篇)对RANSAC进行各种改进,这令我感到很吃惊。毕竟该方法在1981年就被提出了,经过将近40年的发展,其各种变种已经对该方法进行了很多的完善,然而依然能够进行进一步改进,可见该方法的广泛应用,及强大的生命力。同时在个人的研究工作中,RANSAC也起到了很大的作用,这激起了我对这一方法进行全面系统学习的热情。经过大约半年的学习,我对这一方法,更确切应该称为“思想”,有了更深的认识,因此,打算以一系列博文的形式,对该“思想”的演进进行描述。同时,也为大家提供相关的方法的参考文献及源码链接,并结合自己的使用经历,剖析各种方法的实际效果,以方便大家对该方法的理解,以及在实际使用中,选取合适的方法。当然由于个人的精力、水平有限,难免会存在遗漏或者错误之处,也欢迎大家指正。 以下是我该系列博文的计划提纲: 1、 盘古开天——RANSAC的诞生 2、 十拿九稳——更有效的采样策略 3、 精益求精——更准确的模型估计 4、 万无一失——更可靠的模型评估 5、 桃李天下——广义“最大一致性” 其中第一章主要介绍RANSAC最原始的方法,及其存在的一些不足;第2-4章针对RANSAC的三个方面:数据采样、模型估计、模型评估,介绍相应的优化方法;第5章介绍更为一般的“最大一致性

RANSAC Algorithm

落花浮王杯 提交于 2019-11-28 19:19:01
问题 Can anybody please show me how to use RANSAC algorithm to select common feature points in two images which have a certain portion of overlap? The problem came out from feature based image stitching. 回答1: I implemented a image stitcher a couple of years back. The article on RANSAC on Wikipedia describes the general algortihm well. When using RANSAC for feature based image matching, what you want is to find the transform that best transforms the first image to the second image. This would be