PCL1.8.1 采样一致性算法 RANSAC

扶醉桌前 提交于 2019-11-28 22:58:28

采样一致性算法主要是拟合点云中的平面、直线、圆等参数模型。

http://pointclouds.org/documentation/tutorials/random_sample_consensus.php#random-sample-consensus

平面拟合

将远离平面0.01米的点剔除掉

#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_plane.h>


pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr final(new pcl::PointCloud<pcl::PointXYZ>);

//创建一个平面模型
pcl::SampleConsensusModelPlane<pcl::PointXYZ>::Ptr
		model_p(new pcl::SampleConsensusModelPlane<pcl::PointXYZ>(cloud));

//用于保存拟合后的点的索引
std::vector<int> inliers;

//创建随机采样一致性算法
pcl::RandomSampleConsensus<pcl::PointXYZ> ransac(model_p);
ransac.setDistanceThreshold(.01);
ransac.computeModel();
ransac.getInliers(inliers);

// copies all inliers of the model computed to another PointCloud
pcl::copyPointCloud (*cloud, inliers, *final);

球形拟合

将远离qiu面0.01米的点剔除掉

#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_sphere.h>

//用于保存拟合后的点的索引
std::vector<int> inliers;


// initialize PointClouds
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr final (new pcl::PointCloud<pcl::PointXYZ>);

// created RandomSampleConsensus object and compute the appropriated model
pcl::SampleConsensusModelSphere<pcl::PointXYZ>::Ptr
    model_s(new pcl::SampleConsensusModelSphere<pcl::PointXYZ> (cloud));

pcl::RandomSampleConsensus<pcl::PointXYZ> ransac (model_s);
ransac.setDistanceThreshold (.01);
ransac.computeModel();
ransac.getInliers(inliers);

pcl::copyPointCloud (*cloud, inliers, *final);

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!