fft

Apply FFT to a both channels of a stereo signal separately?

人盡茶涼 提交于 2020-01-13 18:10:12
问题 I'm reading a wave-file and would like to apply the fast fourier transformation to it. However I've got a stereo signal and I'm wondering what to do with the left and right channel. Does the FFT need to be applied to both channels separately? 回答1: Yes and no. Certainly the FFT of each channel is independent, so you want separate FFTs for each of them. However, it is possible to compute two FFTs of real data using one call to a routine for FFTs of complex data and some additional arithmetic.

How to properly scale frequency axis in Fast Fourier Transform?

两盒软妹~` 提交于 2020-01-13 15:53:08
问题 I am trying some sample code taking the FFT of a simple sinusoidal function. Below is the code import numpy as np from matplotlib import pyplot as plt N = 1024 limit = 10 x = np.linspace(-limit, limit, N) dx = x[1] - x[0] y = np.sin(2 * np.pi * 5 * x) + np.sin(2 * np.pi * x) Y = np.abs(np.fft.fft(y) ** 2) z = fft.fftshift(np.fft.fftfreq(N, dx)) plt.plot(z[int(N/2):], Y[int(N/2):]) plt.show() From the function that is given, , it is clear there should be two spikes at frequencies 1 and 5.

位运算的诱惑,FFT摇身一变FWT(快速沃尔什变换)(未完待续)

烂漫一生 提交于 2020-01-13 10:41:41
目录 参考文献 例题 符号约定 通用思路 规律性 限制性 可行性 可分治性 矩阵 和运算 非运算 异或运算 代码 小结 未完待续 真的想点接触这个玩意。 cmd写的OI多项式💊是真的顶。 参考文献 人称OI药丸: https://www.luogu.com.cn/blog/command-block/wei-yun-suan-juan-ji-yu-ji-kuo-zhan ZFY:你又从洛谷日报上抄袭,烦不烦呀。 如果能有源码我还自己打!QAQ 例题 例题 符号约定 ZFY:抄袭的第一步。。。 文中的多项式和下标均为向量, \([]\) 表示向量拼接(但是 \([\) 命题 \(]\) 就是当命题成立时为 \(1\) )。 \(A_{i}\) 表示 \(A\) 中的第 \(i\) 位, \(i_{j}\) 表示 \(i\) 的二进制中从高往低的第 \(j\) 位。 ZWQ:你这和照搬有什么区别。。。为什么不能有自己的思考呢?像我一样。 \(⊕\) 为位运算,&为和运算,^为异或,|为非运算。 规定 \(n\) 为总位数,且一定是 \(2\) 的次幂,记为 \(2^u\) 。 \(C[k]=\sum\limits_{i⊕j==k,0≤i,j≤n-1}A[i]*B[i]\) ,写成 \((A*B=C)\) ,称为位运算 \(⊕\) 的卷积形式。 称 \(DWT(A)\) 为 \(A\)

How to extract features from FFT?

最后都变了- 提交于 2020-01-13 09:57:09
问题 I am gathering data from X, Y and Z accelerometer sensors sampled at 200 Hz. The 3 axis are combined into a single signal called 'XYZ_Acc'. I followed tutorials on how to transform time domain signal into frequency domain using scipy fftpack library. The code I'm using is the below: from scipy.fftpack import fft # get a 500ms slice from dataframe sample500ms = df.loc[pd.to_datetime('2019-12-15 11:01:31.000'):pd.to_datetime('2019-12-15 11:01:31.495')]['XYZ_Acc'] f_s = 200 # sensor sampling

Efficient 2D FFT on real input data?

天涯浪子 提交于 2020-01-13 00:30:20
问题 I'm currently implementing a two dimensional FFT for real input data using opencl (more specifically a fast 2D convolution using FFTs, so I only need something which behaves similary enough to apply the convolution to). The 2D FFT is implemented using an 1D FFT on the rows and afterwards an 1D FFT on the cols. To make this more efficient I'm trying to use the symmetries of FFTs with real input in order to be able to calculate smaller FFTs. I found that I can combine two rows into one, using

How to work with onWaveFormDataCapture result of Visualizer object?

こ雲淡風輕ζ 提交于 2020-01-12 10:13:14
问题 I'm new to android programming and audio visualization. I want to create a simple audio visualizer using MediaPlayer and Visualizer classes. My problem is, I don't know what wave form data really is. Must I use it to visualize audio? I'm using the code below. It's problem is, it will only visualize audio for the first 10-12 seconds of the file; after that, I'm unable to capture more data! Where did I go wrong? public void attachVisualizer() { Visualizer vis = new Visualizer(mPlayer

scaling factor for CUFFT

对着背影说爱祢 提交于 2020-01-11 05:12:14
问题 I wrote a simple test program, where I was doing Complex to Complex FT's and I just generated some data 1..50 and stuck it in for the real and imaginary part for each index of the array. When I do an operation like this IFFT(FFT(A)) = A to test them out, I am getting different results for each library. FFTW, I have to divide the output by len(A) to get back the original A However, doing this forward then reverse FFT with CUFFT, it looks like I have to divide by (sqrt(2)*50) to get back to the

FFT

对着背影说爱祢 提交于 2020-01-11 00:25:13
多项式 \[ \begin{aligned} A(x)& =\sum_{i=0}^na_ix_i \\ &=(x_0,y_0),(x_1,y_1),\cdots,(x_n,y_n) \end{aligned} \] 卷积 \[ A(x)B(x)=\sum_{i=0}^n\sum_{j=0}^na_ib_jx^{i+j} \] 若 \(A\ast B=C\) ,可知求 \(C\) 的系数数列时间复杂度 \(O(n^2)\) 。 考虑点值表达式的卷积 \[ A(x)=(x_0,y_0),(x_1,y_1),\cdots,(x_n,y_n) \] \[ B(x)=(x_0,y_0'),(x_1,y_1'),\cdots,(x_n,y_n')) \] 可得出 \(C\) 的一个不完整表达 \[C(x)=(x_0,y_0y_0'),(x_1,y_1y_1'),\cdots,(x_n,y_ny_n')\] 若将点对个数增至 \(2n+1\) 个,可知求出 \(C\) 的点值数列时间复杂度 \(O(n)\) 。 DFT & IDFT DFT(Discrete Fourier Transform,离散傅里叶变换) 是系数数列 \(a_0,a_1,\cdots,a_n\) 转为点值数列的过程, IDFT(Inverse Discrete Fourier Transform,逆离散傅里叶变换) 是

快速傅里叶变换fft

对着背影说爱祢 提交于 2020-01-10 19:12:31
1.傅里叶变换 傅里叶变换是一个很重要的变换方法。大部分人对傅里叶变换的理解就是,它实现了信号从时域到频域的转换,而从数学的角度来看,傅里叶变换其实就是一种基底变换(通俗地说就是改变原来的坐标系)。然而,不论从什么角度来理解傅里叶变换,我们只要记住,它的本质就是一个序列 \(f\) 到另一个序列的 \(F\) 转换(连续或离散)。 傅里叶变换的研究和应用都非常多,因此本文不再赘述相关的内容,如果想通俗且深入地理解傅里叶变换,我推荐 马同学 的博客。 一般的傅里叶变换通常指以下的公式: \[F(j\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt\] 为了和 离散傅里叶变换 区别,我们称其为 连续傅里叶变换 。 2.离散傅里叶变换DFT 由前文可知, 连续傅里叶变换 的公式如下: \[F(j\omega)=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt\] 现实中,我们一般无法得到连续的观察序列 \(f(t)\) ,只能通过采样的方式得到离散的子序列 \(f[k]\) 。比较严谨的定义是: 从连续的时间序列 \(f(t)\) 中按给定周期 \(T\) 采样 \(N\) 个点, \(f[0],f[1],\dots,f[N-1]\) ,这 \(N\) 个点组成了 \(f(t)\) 的一个离散子序列

i don't really understand FFT and sample rates

戏子无情 提交于 2020-01-07 08:25:12
问题 Im really confused over here. I am a ai programmer working on a game that is designed to detect beats in songs and some more. I have no previous knowledge about audio and just reading through whatever material i can find. While i got fft working and stuff I simply don't understand the way samples are transferred to different frequencies. Question 1, what does each frequency stands for. For the algorithm i got. I can transfer for example 1024 samples into 512 outcomes. So are they a