PHP+JS+rsa数据加密传输

你。 提交于 2019-11-29 18:14:01

(已过时,请勿使用.建议用openssl扩展,私钥-公钥每次请求时候即时生成,私钥存放于SESSION或数据库等,公钥返回客户端.防止重放攻击,否则加密没有意义.)

JS端代码:

//文件base64.js:
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var b64pad="=";

function hex2b64(h) {
  var i;
  var c;
  var ret = "";
  for(i = 0; i+3 <= h.length; i+=3) {
    c = parseInt(h.substring(i,i+3),16);
    ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63);
  }
  if(i+1 == h.length) {
    c = parseInt(h.substring(i,i+1),16);
    ret += b64map.charAt(c << 2);
  }
  else if(i+2 == h.length) {
    c = parseInt(h.substring(i,i+2),16);
    ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4);
  }
  while((ret.length & 3) > 0) ret += b64pad;
  return ret;
}

// convert a base64 string to hex
function b64tohex(s) {
  var ret = ""
  var i;
  var k = 0; // b64 state, 0-3
  var slop;
  for(i = 0; i < s.length; ++i) {
    if(s.charAt(i) == b64pad) break;
    v = b64map.indexOf(s.charAt(i));
    if(v < 0) continue;
    if(k == 0) {
      ret += int2char(v >> 2);
      slop = v & 3;
      k = 1;
    }
    else if(k == 1) {
      ret += int2char((slop << 2) | (v >> 4));
      slop = v & 0xf;
      k = 2;
    }
    else if(k == 2) {
      ret += int2char(slop);
      ret += int2char(v >> 2);
      slop = v & 3;
      k = 3;
    }
    else {
      ret += int2char((slop << 2) | (v >> 4));
      ret += int2char(v & 0xf);
      k = 0;
    }
  }
  if(k == 1)
    ret += int2char(slop << 2);
  return ret;
}

// convert a base64 string to a byte/number array
function b64toBA(s) {
  //piggyback on b64tohex for now, optimize later
  var h = b64tohex(s);
  var i;
  var a = new Array();
  for(i = 0; 2*i < h.length; ++i) {
    a[i] = parseInt(h.substring(2*i,2*i+2),16);
  }
  return a;
}
#文件jsbn.js
// Copyright (c) 2005  Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.

// Basic JavaScript BN library - subset useful for RSA encryption.

// Bits per digit
var dbits;

// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary&0xffffff)==0xefcafe);

// (public) Constructor
function BigInteger(a,b,c) {
  if(a != null)
    if("number" == typeof a) this.fromNumber(a,b,c);
    else if(b == null && "string" != typeof a) this.fromString(a,256);
    else this.fromString(a,b);
}

// return new, unset BigInteger
function nbi() { return new BigInteger(null); }

// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.

// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i,x,w,j,c,n) {
  while(--n >= 0) {
    var v = x*this[i++]+w[j]+c;
    c = Math.floor(v/0x4000000);
    w[j++] = v&0x3ffffff;
  }
  return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i,x,w,j,c,n) {
  var xl = x&0x7fff, xh = x>>15;
  while(--n >= 0) {
    var l = this[i]&0x7fff;
    var h = this[i++]>>15;
    var m = xh*l+h*xl;
    l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
    c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
    w[j++] = l&0x3fffffff;
  }
  return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
  var xl = x&0x3fff, xh = x>>14;
  while(--n >= 0) {
    var l = this[i]&0x3fff;
    var h = this[i++]>>14;
    var m = xh*l+h*xl;
    l = xl*l+((m&0x3fff)<<14)+w[j]+c;
    c = (l>>28)+(m>>14)+xh*h;
    w[j++] = l&0xfffffff;
  }
  return c;
}
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
  BigInteger.prototype.am = am2;
  dbits = 30;
}
else if(j_lm && (navigator.appName != "Netscape")) {
  BigInteger.prototype.am = am1;
  dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
  BigInteger.prototype.am = am3;
  dbits = 28;
}

BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1<<dbits)-1);
BigInteger.prototype.DV = (1<<dbits);

var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2,BI_FP);
BigInteger.prototype.F1 = BI_FP-dbits;
BigInteger.prototype.F2 = 2*dbits-BI_FP;

// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;

function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
  var c = BI_RC[s.charCodeAt(i)];
  return (c==null)?-1:c;
}

// (protected) copy this to r
function bnpCopyTo(r) {
  for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
  r.t = this.t;
  r.s = this.s;
}

// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
  this.t = 1;
  this.s = (x<0)?-1:0;
  if(x > 0) this[0] = x;
  else if(x < -1) this[0] = x+DV;
  else this.t = 0;
}

// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }

// (protected) set from string and radix
function bnpFromString(s,b) {
  var k;
  if(b == 16) k = 4;
  else if(b == 8) k = 3;
  else if(b == 256) k = 8; // byte array
  else if(b == 2) k = 1;
  else if(b == 32) k = 5;
  else if(b == 4) k = 2;
  else { this.fromRadix(s,b); return; }
  this.t = 0;
  this.s = 0;
  var i = s.length, mi = false, sh = 0;
  while(--i >= 0) {
    var x = (k==8)?s[i]&0xff:intAt(s,i);
    if(x < 0) {
      if(s.charAt(i) == "-") mi = true;
      continue;
    }
    mi = false;
    if(sh == 0)
      this[this.t++] = x;
    else if(sh+k > this.DB) {
      this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
      this[this.t++] = (x>>(this.DB-sh));
    }
    else
      this[this.t-1] |= x<<sh;
    sh += k;
    if(sh >= this.DB) sh -= this.DB;
  }
  if(k == 8 && (s[0]&0x80) != 0) {
    this.s = -1;
    if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
  }
  this.clamp();
  if(mi) BigInteger.ZERO.subTo(this,this);
}

// (protected) clamp off excess high words
function bnpClamp() {
  var c = this.s&this.DM;
  while(this.t > 0 && this[this.t-1] == c) --this.t;
}

// (public) return string representation in given radix
function bnToString(b) {
  if(this.s < 0) return "-"+this.negate().toString(b);
  var k;
  if(b == 16) k = 4;
  else if(b == 8) k = 3;
  else if(b == 2) k = 1;
  else if(b == 32) k = 5;
  else if(b == 4) k = 2;
  else return this.toRadix(b);
  var km = (1<<k)-1, d, m = false, r = "", i = this.t;
  var p = this.DB-(i*this.DB)%k;
  if(i-- > 0) {
    if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
    while(i >= 0) {
      if(p < k) {
        d = (this[i]&((1<<p)-1))<<(k-p);
        d |= this[--i]>>(p+=this.DB-k);
      }
      else {
        d = (this[i]>>(p-=k))&km;
        if(p <= 0) { p += this.DB; --i; }
      }
      if(d > 0) m = true;
      if(m) r += int2char(d);
    }
  }
  return m?r:"0";
}

// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }

// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }

// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
  var r = this.s-a.s;
  if(r != 0) return r;
  var i = this.t;
  r = i-a.t;
  if(r != 0) return r;
  while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
  return 0;
}

// returns bit length of the integer x
function nbits(x) {
  var r = 1, t;
  if((t=x>>>16) != 0) { x = t; r += 16; }
  if((t=x>>8) != 0) { x = t; r += 8; }
  if((t=x>>4) != 0) { x = t; r += 4; }
  if((t=x>>2) != 0) { x = t; r += 2; }
  if((t=x>>1) != 0) { x = t; r += 1; }
  return r;
}

// (public) return the number of bits in "this"
function bnBitLength() {
  if(this.t <= 0) return 0;
  return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}

// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
  var i;
  for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
  for(i = n-1; i >= 0; --i) r[i] = 0;
  r.t = this.t+n;
  r.s = this.s;
}

// (protected) r = this >> n*DB
function bnpDRShiftTo(n,r) {
  for(var i = n; i < this.t; ++i) r[i-n] = this[i];
  r.t = Math.max(this.t-n,0);
  r.s = this.s;
}

// (protected) r = this << n
function bnpLShiftTo(n,r) {
  var bs = n%this.DB;
  var cbs = this.DB-bs;
  var bm = (1<<cbs)-1;
  var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
  for(i = this.t-1; i >= 0; --i) {
    r[i+ds+1] = (this[i]>>cbs)|c;
    c = (this[i]&bm)<<bs;
  }
  for(i = ds-1; i >= 0; --i) r[i] = 0;
  r[ds] = c;
  r.t = this.t+ds+1;
  r.s = this.s;
  r.clamp();
}

// (protected) r = this >> n
function bnpRShiftTo(n,r) {
  r.s = this.s;
  var ds = Math.floor(n/this.DB);
  if(ds >= this.t) { r.t = 0; return; }
  var bs = n%this.DB;
  var cbs = this.DB-bs;
  var bm = (1<<bs)-1;
  r[0] = this[ds]>>bs;
  for(var i = ds+1; i < this.t; ++i) {
    r[i-ds-1] |= (this[i]&bm)<<cbs;
    r[i-ds] = this[i]>>bs;
  }
  if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
  r.t = this.t-ds;
  r.clamp();
}

// (protected) r = this - a
function bnpSubTo(a,r) {
  var i = 0, c = 0, m = Math.min(a.t,this.t);
  while(i < m) {
    c += this[i]-a[i];
    r[i++] = c&this.DM;
    c >>= this.DB;
  }
  if(a.t < this.t) {
    c -= a.s;
    while(i < this.t) {
      c += this[i];
      r[i++] = c&this.DM;
      c >>= this.DB;
    }
    c += this.s;
  }
  else {
    c += this.s;
    while(i < a.t) {
      c -= a[i];
      r[i++] = c&this.DM;
      c >>= this.DB;
    }
    c -= a.s;
  }
  r.s = (c<0)?-1:0;
  if(c < -1) r[i++] = this.DV+c;
  else if(c > 0) r[i++] = c;
  r.t = i;
  r.clamp();
}

// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
  var x = this.abs(), y = a.abs();
  var i = x.t;
  r.t = i+y.t;
  while(--i >= 0) r[i] = 0;
  for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
  r.s = 0;
  r.clamp();
  if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}

// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
  var x = this.abs();
  var i = r.t = 2*x.t;
  while(--i >= 0) r[i] = 0;
  for(i = 0; i < x.t-1; ++i) {
    var c = x.am(i,x[i],r,2*i,0,1);
    if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
      r[i+x.t] -= x.DV;
      r[i+x.t+1] = 1;
    }
  }
  if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
  r.s = 0;
  r.clamp();
}

// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m.  q or r may be null.
function bnpDivRemTo(m,q,r) {
  var pm = m.abs();
  if(pm.t <= 0) return;
  var pt = this.abs();
  if(pt.t < pm.t) {
    if(q != null) q.fromInt(0);
    if(r != null) this.copyTo(r);
    return;
  }
  if(r == null) r = nbi();
  var y = nbi(), ts = this.s, ms = m.s;
  var nsh = this.DB-nbits(pm[pm.t-1]);	// normalize modulus
  if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
  else { pm.copyTo(y); pt.copyTo(r); }
  var ys = y.t;
  var y0 = y[ys-1];
  if(y0 == 0) return;
  var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
  var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
  var i = r.t, j = i-ys, t = (q==null)?nbi():q;
  y.dlShiftTo(j,t);
  if(r.compareTo(t) >= 0) {
    r[r.t++] = 1;
    r.subTo(t,r);
  }
  BigInteger.ONE.dlShiftTo(ys,t);
  t.subTo(y,y);	// "negative" y so we can replace sub with am later
  while(y.t < ys) y[y.t++] = 0;
  while(--j >= 0) {
    // Estimate quotient digit
    var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
    if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {	// Try it out
      y.dlShiftTo(j,t);
      r.subTo(t,r);
      while(r[i] < --qd) r.subTo(t,r);
    }
  }
  if(q != null) {
    r.drShiftTo(ys,q);
    if(ts != ms) BigInteger.ZERO.subTo(q,q);
  }
  r.t = ys;
  r.clamp();
  if(nsh > 0) r.rShiftTo(nsh,r);	// Denormalize remainder
  if(ts < 0) BigInteger.ZERO.subTo(r,r);
}

// (public) this mod a
function bnMod(a) {
  var r = nbi();
  this.abs().divRemTo(a,null,r);
  if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
  return r;
}

// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
  if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
  else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;

// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
//         xy == 1 (mod m)
//         xy =  1+km
//   xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
  if(this.t < 1) return 0;
  var x = this[0];
  if((x&1) == 0) return 0;
  var y = x&3;		// y == 1/x mod 2^2
  y = (y*(2-(x&0xf)*y))&0xf;	// y == 1/x mod 2^4
  y = (y*(2-(x&0xff)*y))&0xff;	// y == 1/x mod 2^8
  y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16
  // last step - calculate inverse mod DV directly;
  // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
  y = (y*(2-x*y%this.DV))%this.DV;		// y == 1/x mod 2^dbits
  // we really want the negative inverse, and -DV < y < DV
  return (y>0)?this.DV-y:-y;
}

// Montgomery reduction
function Montgomery(m) {
  this.m = m;
  this.mp = m.invDigit();
  this.mpl = this.mp&0x7fff;
  this.mph = this.mp>>15;
  this.um = (1<<(m.DB-15))-1;
  this.mt2 = 2*m.t;
}

// xR mod m
function montConvert(x) {
  var r = nbi();
  x.abs().dlShiftTo(this.m.t,r);
  r.divRemTo(this.m,null,r);
  if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
  return r;
}

// x/R mod m
function montRevert(x) {
  var r = nbi();
  x.copyTo(r);
  this.reduce(r);
  return r;
}

// x = x/R mod m (HAC 14.32)
function montReduce(x) {
  while(x.t <= this.mt2)	// pad x so am has enough room later
    x[x.t++] = 0;
  for(var i = 0; i < this.m.t; ++i) {
    // faster way of calculating u0 = x[i]*mp mod DV
    var j = x[i]&0x7fff;
    var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
    // use am to combine the multiply-shift-add into one call
    j = i+this.m.t;
    x[j] += this.m.am(0,u0,x,i,0,this.m.t);
    // propagate carry
    while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
  }
  x.clamp();
  x.drShiftTo(this.m.t,x);
  if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}

// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }

Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;

// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }

// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
  if(e > 0xffffffff || e < 1) return BigInteger.ONE;
  var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
  g.copyTo(r);
  while(--i >= 0) {
    z.sqrTo(r,r2);
    if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
    else { var t = r; r = r2; r2 = t; }
  }
  return z.revert(r);
}

// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e,m) {
  var z;
  if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
  return this.exp(e,z);
}

// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;

// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;

// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
#文件prng4.js
// prng4.js - uses Arcfour as a PRNG

function Arcfour() {
  this.i = 0;
  this.j = 0;
  this.S = new Array();
}

// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
  var i, j, t;
  for(i = 0; i < 256; ++i)
    this.S[i] = i;
  j = 0;
  for(i = 0; i < 256; ++i) {
    j = (j + this.S[i] + key[i % key.length]) & 255;
    t = this.S[i];
    this.S[i] = this.S[j];
    this.S[j] = t;
  }
  this.i = 0;
  this.j = 0;
}

function ARC4next() {
  var t;
  this.i = (this.i + 1) & 255;
  this.j = (this.j + this.S[this.i]) & 255;
  t = this.S[this.i];
  this.S[this.i] = this.S[this.j];
  this.S[this.j] = t;
  return this.S[(t + this.S[this.i]) & 255];
}

Arcfour.prototype.init = ARC4init;
Arcfour.prototype.next = ARC4next;

// Plug in your RNG constructor here
function prng_newstate() {
  return new Arcfour();
}

// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
var rng_psize = 256;
文件:rng.js
// Random number generator - requires a PRNG backend, e.g. prng4.js

// For best results, put code like
// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
// in your main HTML document.

var rng_state;
var rng_pool;
var rng_pptr;

// Mix in a 32-bit integer into the pool
function rng_seed_int(x) {
  rng_pool[rng_pptr++] ^= x & 255;
  rng_pool[rng_pptr++] ^= (x >> 8) & 255;
  rng_pool[rng_pptr++] ^= (x >> 16) & 255;
  rng_pool[rng_pptr++] ^= (x >> 24) & 255;
  if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
}

// Mix in the current time (w/milliseconds) into the pool
function rng_seed_time() {
  rng_seed_int(new Date().getTime());
}

// Initialize the pool with junk if needed.
if(rng_pool == null) {
  rng_pool = new Array();
  rng_pptr = 0;
  var t;
  if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) {
    // Extract entropy (256 bits) from NS4 RNG if available
    var z = window.crypto.random(32);
    for(t = 0; t < z.length; ++t)
      rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
  }  
  while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
    t = Math.floor(65536 * Math.random());
    rng_pool[rng_pptr++] = t >>> 8;
    rng_pool[rng_pptr++] = t & 255;
  }
  rng_pptr = 0;
  rng_seed_time();
  //rng_seed_int(window.screenX);
  //rng_seed_int(window.screenY);
}

function rng_get_byte() {
  if(rng_state == null) {
    rng_seed_time();
    rng_state = prng_newstate();
    rng_state.init(rng_pool);
    for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
      rng_pool[rng_pptr] = 0;
    rng_pptr = 0;
    //rng_pool = null;
  }
  // TODO: allow reseeding after first request
  return rng_state.next();
}

function rng_get_bytes(ba) {
  var i;
  for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
}

function SecureRandom() {}

SecureRandom.prototype.nextBytes = rng_get_bytes;
#文件:rsa.js
// Depends on jsbn.js and rng.js

// Version 1.1: support utf-8 encoding in pkcs1pad2

// convert a (hex) string to a bignum object
function parseBigInt(str,r) {
  return new BigInteger(str,r);
}

function linebrk(s,n) {
  var ret = "";
  var i = 0;
  while(i + n < s.length) {
    ret += s.substring(i,i+n) + "\n";
    i += n;
  }
  return ret + s.substring(i,s.length);
}

function byte2Hex(b) {
  if(b < 0x10)
    return "0" + b.toString(16);
  else
    return b.toString(16);
}

// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s,n) {
  if(n < s.length + 11) { // TODO: fix for utf-8
    alert("Message too long for RSA");
    return null;
  }
  var ba = new Array();
  var i = s.length - 1;
  while(i >= 0 && n > 0) {
    var c = s.charCodeAt(i--);
    if(c < 128) { // encode using utf-8
      ba[--n] = c;
    }
    else if((c > 127) && (c < 2048)) {
      ba[--n] = (c & 63) | 128;
      ba[--n] = (c >> 6) | 192;
    }
    else {
      ba[--n] = (c & 63) | 128;
      ba[--n] = ((c >> 6) & 63) | 128;
      ba[--n] = (c >> 12) | 224;
    }
  }
  ba[--n] = 0;
  var rng = new SecureRandom();
  var x = new Array();
  while(n > 2) { // random non-zero pad
    x[0] = 0;
    while(x[0] == 0) rng.nextBytes(x);
    ba[--n] = x[0];
  }
  ba[--n] = 2;
  ba[--n] = 0;
  return new BigInteger(ba);
}

// "empty" RSA key constructor
function RSAKey() {
  this.n = null;
  this.e = 0;
  this.d = null;
  this.p = null;
  this.q = null;
  this.dmp1 = null;
  this.dmq1 = null;
  this.coeff = null;
}

// Set the public key fields N and e from hex strings
function RSASetPublic(N,E) {
  if(N != null && E != null && N.length > 0 && E.length > 0) {
    this.n = parseBigInt(N,16);
    this.e = parseInt(E,16);
  }
  else
    alert("Invalid RSA public key");
}

// Perform raw public operation on "x": return x^e (mod n)
function RSADoPublic(x) {
  return x.modPowInt(this.e, this.n);
}

// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
function RSAEncrypt(text) {
  var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
  if(m == null) return null;
  var c = this.doPublic(m);
  if(c == null) return null;
  var h = c.toString(16);
  if((h.length & 1) == 0) return h; else return "0" + h;
}

// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
//function RSAEncryptB64(text) {
//  var h = this.encrypt(text);
//  if(h) return hex2b64(h); else return null;
//}

// protected
RSAKey.prototype.doPublic = RSADoPublic;

// public
RSAKey.prototype.setPublic = RSASetPublic;
RSAKey.prototype.encrypt = RSAEncrypt;
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64;

 

HTML代码部分:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
  <head>
    <title>JavaScript RSA Encryption Demo</title>
  </head>
 
<script language="JavaScript" type="text/javascript" src="./js/jsbn.js"></script>
<script language="JavaScript" type="text/javascript" src="./js/prng4.js"></script>
<script language="JavaScript" type="text/javascript" src="./js/rng.js"></script>
<script language="JavaScript" type="text/javascript" src="./js/rsa.js"></script>
<script language="JavaScript" type="text/javascript" src="./js/base64.js"></script>
<script language="JavaScript"> 
//publc key  and public length 16 binary data
var public_key="00b0c2732193eebde5b2e278736a22977a5ee1bb99bea18c0681ad97484b4c7f681e963348eb80667b954534293b0a6cbe2f9651fc98c9ee833f343e719c97c670ead8bec704282f94d9873e083cfd41554f356f00aea38d2b07551733541b64790c2c8f400486fd662a3e95fd5edd2acf4d59ca97fad65cc59b8d10cbc5430c53";
var public_length="10001";
function do_encrypt() {
  var before = new Date();
  var rsa = new RSAKey();
  rsa.setPublic(public_key, public_length);
  var res = rsa.encrypt(document.rsatest.plaintext.value);
  var after = new Date();
  if(res) {
    document.rsatest.ciphertext.value =res;
    document.rsatest.cipherb64.value = hex2b64(res);
    document.rsatest.status.value = "Time: " + (after - before) + "ms";
  }
}

//-->
</script>
 
<form name="rsatest" action="rsa-example.php" method="post">
Plaintext (string):<br>
<input name="plaintext" type="text" value="test" size=40>
<input type="button" value="encrypt" onClick="do_encrypt();"><p>
Ciphertext (hex):<br>
<textarea name="ciphertext" rows=4 cols=70></textarea><p>
Ciphertext (base64):(Not used)<br>
<textarea name="cipherb64" rows=3 cols=70></textarea><p>
Status:<br>
<input name="status" type="text" size=40><p>
<input type="submit" value="go php" />
</form>
  </body>
</html>

 

后端PHP部分:

RSA库:

<?php
/*
 * PHP implementation of the RSA algorithm
 * (C) Copyright 2004 Edsko de Vries, Ireland
 *
 * Licensed under the GNU Public License (GPL)
 *
 * This implementation has been verified against [3] 
 * (tested Java/PHP interoperability).
 *
 * References:
 * [1] "Applied Cryptography", Bruce Schneier, John Wiley & Sons, 1996
 * [2] "Prime Number Hide-and-Seek", Brian Raiter, Muppetlabs (online)
 * [3] "The Bouncy Castle Crypto Package", Legion of the Bouncy Castle,
 *      (open source cryptography library for Java, online)
 * [4] "PKCS #1: RSA Encryption Standard", RSA Laboratories Technical Note,
 *      version 1.5, revised November 1, 1993
 */

/*
 * Functions that are meant to be used by the user of this PHP module.
 *
 * Notes:
 * - $key and $modulus should be numbers in (decimal) string format
 * - $message is expected to be binary data
 * - $keylength should be a multiple of 8, and should be in bits
 * - For rsa_encrypt/rsa_sign, the length of $message should not exceed 
 *   ($keylength / 8) - 11 (as mandated by [4]).
 * - rsa_encrypt and rsa_sign will automatically add padding to the message. 
 *   For rsa_encrypt, this padding will consist of random values; for rsa_sign,
 *   padding will consist of the appropriate number of 0xFF values (see [4])
 * - rsa_decrypt and rsa_verify will automatically remove message padding.
 * - Blocks for decoding (rsa_decrypt, rsa_verify) should be exactly 
 *   ($keylength / 8) bytes long.
 * - rsa_encrypt and rsa_verify expect a public key; rsa_decrypt and rsa_sign
 *   expect a private key.
 */

/**
 * 于2010-11-12 1:06分于LONELY修改
 */
function rsa_encrypt($message, $public_key, $modulus, $keylength)
{
	$padded = add_PKCS1_padding($message, true, $keylength / 8);
	$number = binary_to_number($padded);
	$encrypted = pow_mod($number, $public_key, $modulus);
	$result = number_to_binary($encrypted, $keylength / 8);
	
	return $result;
}

function rsa_decrypt($message, $private_key, $modulus, $keylength)
{
	$number = binary_to_number($message);
	$decrypted = pow_mod($number, $private_key, $modulus);
	$result = number_to_binary($decrypted, $keylength / 8);
	return remove_PKCS1_padding($result, $keylength / 8);
}

function rsa_sign($message, $private_key, $modulus, $keylength)
{
	$padded = add_PKCS1_padding($message, false, $keylength / 8);
	$number = binary_to_number($padded);
	$signed = pow_mod($number, $private_key, $modulus);
	$result = number_to_binary($signed, $keylength / 8);

	return $result;
}

function rsa_verify($message, $public_key, $modulus, $keylength)
{
	return rsa_decrypt($message, $public_key, $modulus, $keylength);
}

function rsa_kyp_verify($message, $public_key, $modulus, $keylength)
{
	$number = binary_to_number($message);
	$decrypted = pow_mod($number, $public_key, $modulus);
	$result = number_to_binary($decrypted, $keylength / 8);

	return remove_KYP_padding($result, $keylength / 8);
}

/*
 * Some constants
 */

define("BCCOMP_LARGER", 1);

/*
 * The actual implementation.
 * Requires BCMath support in PHP (compile with --enable-bcmath)
 */

//--
// Calculate (p ^ q) mod r 
//
// We need some trickery to [2]:
//   (a) Avoid calculating (p ^ q) before (p ^ q) mod r, because for typical RSA
//       applications, (p ^ q) is going to be _WAY_ too large.
//       (I mean, __WAY__ too large - won't fit in your computer's memory.)
//   (b) Still be reasonably efficient.
//
// We assume p, q and r are all positive, and that r is non-zero.
//
// Note that the more simple algorithm of multiplying $p by itself $q times, and
// applying "mod $r" at every step is also valid, but is O($q), whereas this
// algorithm is O(log $q). Big difference.
//
// As far as I can see, the algorithm I use is optimal; there is no redundancy
// in the calculation of the partial results. 
//--
function pow_mod($p, $q, $r)
{
	// Extract powers of 2 from $q
	$factors = array();
	$div = $q;
	$power_of_two = 0;
	while(bccomp($div, "0") == BCCOMP_LARGER)
	{
		$rem = bcmod($div, 2);
		$div = bcdiv($div, 2);
	
		if($rem) array_push($factors, $power_of_two);
		$power_of_two++;
	}

	// Calculate partial results for each factor, using each partial result as a
	// starting point for the next. This depends of the factors of two being
	// generated in increasing order.
	$partial_results = array();
	$part_res = $p;
	$idx = 0;
	foreach($factors as $factor)
	{
		while($idx < $factor)
		{
			$part_res = bcpow($part_res, "2");
			$part_res = bcmod($part_res, $r);

			$idx++;
		}
		
		array_push($partial_results, $part_res);
	}

	// Calculate final result
	$result = "1";
	foreach($partial_results as $part_res)
	{
		$result = bcmul($result, $part_res);
		$result = bcmod($result, $r);
	}

	return $result;
}

//--
// Function to add padding to a decrypted string
// We need to know if this is a private or a public key operation [4]
//--
function add_PKCS1_padding($data, $isPublicKey, $blocksize)
{
	$pad_length = $blocksize - 3 - strlen($data);

	if($isPublicKey)
	{
		$block_type = "\x02";
	
		$padding = "";
		for($i = 0; $i < $pad_length; $i++)
		{
			$rnd = mt_rand(1, 255);
			$padding .= chr($rnd);
		}
	}
	else
	{
		$block_type = "\x01";
		$padding = str_repeat("\xFF", $pad_length);
	}
	
	return "\x00" . $block_type . $padding . "\x00" . $data;
}

//--
// Remove padding from a decrypted string
// See [4] for more details.
//--
function remove_PKCS1_padding($data, $blocksize)
{
	//以下部分于原版的RSA有所不同,修复了原版的一个BUG
	//assert(strlen($data) == $blocksize);
	$data = substr($data, 1);

	// We cannot deal with block type 0
	if($data{0} == '\0')
		die("Block type 0 not implemented.");

	// Then the block type must be 1 or 2 
	//assert(($data{0} == "\x01") || ($data{0} == "\x02"));

//	echo $data;
	// Remove the padding
	$i=1;
	while (1){
		$offset = strpos($data, "\0", $i);
		if(!$offset){
			$offset=$i;
			break;
		}
		$i=$offset+1;
	}
	//$offset = strpos($data, "\0", 100);
	return substr($data, $offset);
}

//--
// Remove "kyp" padding
// (Non standard)
//--
function remove_KYP_padding($data, $blocksize)
{
	assert(strlen($data) == $blocksize);
	
	$offset = strpos($data, "\0");
	return substr($data, 0, $offset);
}

//--
// Convert binary data to a decimal number
//--
function binary_to_number($data)
{
	$base = "256";
	$radix = "1";
	$result = "0";

	for($i = strlen($data) - 1; $i >= 0; $i--)
	{
		$digit = ord($data{$i});
		$part_res = bcmul($digit, $radix);
		$result = bcadd($result, $part_res);
		$radix = bcmul($radix, $base);
	}

	return $result;
}

//--
// Convert a number back into binary form
//--
function number_to_binary($number, $blocksize)
{
	$base = "256";
	$result = "";

	$div = $number;
	while($div > 0)
	{
		$mod = bcmod($div, $base);
		$div = bcdiv($div, $base);
		
		$result = chr($mod) . $result;
	}

	return str_pad($result, $blocksize, "\x00", STR_PAD_LEFT);
}
?>

 

 

处理的PHP代码:

<?php
//Decimal Data
	include "rsa.php";
	$modulus='124124790696783899579957666732205416556275207289308772677367395397704314099727565633927507139389670490184904760526156031441045563225987129220634807383637837918320623518532877734472159024203477820731033762885040862183213160281165618500092483026873487507336293388981515466164416989192069833140532570993394388051.0000000000';
	$private='59940207454900542501281722336097731406274284149290386158861762508911700758780200454438527029729836453810395133453343700246367853044479311924174899432036400630350527132581124575735909908195078492323048176864577497230467497768502277772070557874686662727818507841304646138785432507752788647631021854537869399041.0000000000';
	$public="65537";
	$keylength="1024";
	//php encrypt create  
	//$encrypted = rsa_encrypt("vzxcvz bdxf", $public, $modulus, $keylength);
	//$str= bin2hex($encrypted);//bin data to hex data 
	
	$str=$_POST['ciphertext'];
	//echo $str."<br>";
	$encrypted=convert($str); //hex data to bin data
	
	$decrypted = rsa_decrypt($encrypted, $private, $modulus, $keylength);
	echo $decrypted."<br>";
	
	/**
	 * 16 to 2
	 * @param unknown_type $hexString
	 * @return string|unknown
	 */
	  function convert($hexString) 
        { 
                $hexLenght = strlen($hexString); 
                // only hex numbers is allowed 
                if ($hexLenght % 2 != 0 || preg_match("/[^\da-fA-F]/",$hexString)) return FALSE; 

                unset($binString); 
                for ($x = 1; $x <= $hexLenght/2; $x++) 
                { 
                        $binString .= chr(hexdec(substr($hexString,2 * $x - 2,2))); 
                } 

                return $binString; 
        } 
	
?>

 

 

 

生成PRM文件及生产需要的密钥及公钥的PHP文件:

<?php
//create pem file
//run openssl genrsa -out key.pem 1024
//This file is generated variables needed for the operation
list($keylength, $modulus, $public, $private,$modulus_js,$private_js) = read_ssl_key("key.pem");
echo "keylength:(php and js)(private length)<br>";
echo $keylength;
echo "<br>";
echo "modulus:(php)(10)(pubic key)<br>";
echo $modulus;
echo "<br>";
echo "modulus:(js)(16)(pubic key)<br>";
echo $modulus_js;
echo "<br>";
echo "public:(php)(10)(public exponent)<br>";
echo $public;
echo "<br>";
echo "public:(js)(16)(public exponent)<br>";
echo "10001";
echo "<br>";
echo "private:(php)(10)(private key)<br>";
echo $private;
echo "<br>";
echo "private:(js)(16)(private key)<br>";
echo $private_js;


//function 
function read_ssl_key($filename)
	{
		exec("openssl rsa -in $filename -text -noout", $raw); 

		// read the key length
		$keylength = (int) expect($raw[0], "Private-Key: (");

		// read the modulus
		expect($raw[1], "modulus:");
		for($i = 2; $raw[$i][0] == ' '; $i++) $modulusRaw .= trim($raw[$i]);

		// read the public exponent
		$public = (int) expect($raw[$i], "publicExponent: "); 

		// read the private exponent
		expect($raw[$i + 1], "privateExponent:");
		for($i += 2; $raw[$i][0] == ' '; $i++) $privateRaw .= trim($raw[$i]);

		// Just to make sure
		expect($raw[$i], "prime1:");

		// Conversion to decimal format for bcmath 
		$modulus = bc_hexdec($modulusRaw);
		$private = bc_hexdec($privateRaw);

		return array($keylength, $modulus['php'], $public, $private['php'],$modulus['js'], $private['js']);
	}
	
	/*
	 * Convert a hexadecimal number of the form "XX:YY:ZZ:..." to decimal 
	 * Uses BCmath, but the standard normal hexdec function for the components
	 */
	function bc_hexdec($hex)
	{
		$coefficients = explode(":", $hex);
		$result_js= implode("",$coefficients);
		$i = 0;
		$result = 0;
		foreach(array_reverse($coefficients) as $coefficient)
		{
			$mult = bcpow(256, $i++);
			$result = bcadd($result, bcmul(hexdec($coefficient), $mult));
		}

		return array('php'=>$result,'js'=>$result_js);
	}
		/*
	 * If the string has the given prefix, return the remainder. 
	 * If not, die with an error
	 */
	function expect($str, $prefix)
	
	{
		if(substr($str, 0, strlen($prefix)) == $prefix)
			return substr($str, strlen($prefix));
		else
			die("Error: expected $prefix");
	}

 

 

整套加密及解密的方法都在上面了,本人的测试环境为php5.3+WIN7

上面所有文件下载:RSAFILE

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!