CF-516B Drazil and Tiles

♀尐吖头ヾ 提交于 2019-11-28 13:50:39

题目链接:CF-516B Drazil and Tiles

题意

给出$n\times m$的网格,有空白格子和被占据的格子,要把$1\times 2$的骨牌放进网格的空白格子中,骨牌不能重叠,问是否有放满空白格子的唯一解法,有则给出方案,否则输出"Not unique"。


思路

考虑拓扑排序,一个空白格子相邻四个方向的空白格子个数作为这个格子的度数,度数为1说明它只能往那个方向放骨牌,放完一个骨牌就更新其周边空白格子的度数,把度数为1的格子放进拓扑排序的队列,最终能放满整个网格的方案就是唯一解法。


代码实现

#include <cstdio>
#include <cstring>
#include <queue>
#define FOR(i, n) for (int i = 0; i < n; i++)
const int N = 2010;
char grid[N][N];
int deg[N][N];
int dir[][2] = {0, 1, 0, -1, 1, 0, -1, 0};
int n, m;
bool check(int x, int y) {
    if (x >= 0 && y >= 0 && x < n && y < m && grid[x][y] == '.') return true;
    return false;
}

int main() {
    while (~scanf("%d %d", &n, &m)) {
        FOR(i, n) memset(deg[i], 0, sizeof(int) * m);
        FOR(i, n) scanf("%s", grid[i]);
        FOR(i, n) FOR(j, m) if (grid[i][j] == '.') FOR(k, 4) if (check(i + dir[k][0], j + dir[k][1])) deg[i][j]++;
        std::queue<int> qx, qy;
        FOR(i, n) FOR(j, m) if (deg[i][j] == 1) qx.push(i), qy.push(j);
        while (!qx.empty()) {
            int x = qx.front(), y = qy.front();
            qx.pop(), qy.pop();
            FOR(i, 4) {
                int nx = x + dir[i][0], ny = y + dir[i][1];
                if (check(nx, ny)) {
                    if (i == 0) grid[x][y] = '<', grid[nx][ny] = '>';
                    if (i == 1) grid[x][y] = '>', grid[nx][ny] = '<';
                    if (i == 2) grid[x][y] = '^', grid[nx][ny] = 'v';
                    if (i == 3) grid[x][y] = 'v', grid[nx][ny] = '^';
                    deg[nx][ny] = 0;
                    FOR(j, 4) {
                        int nnx = nx + dir[j][0], nny = ny + dir[j][1];
                        if (check(nnx, nny) && --deg[nnx][nny] == 1) qx.push(nnx), qy.push(nny);
                    }
                }
            }
        }
        bool flag = true;
        FOR(i, n) {
            FOR(j, m) if (grid[i][j] == '.') {
                flag = false;
                puts("Not unique");
                break;
            }
            if (!flag) break;
        }
        if (flag) FOR(i, n) grid[i][m] = '\0', printf("%s\n", grid[i]);
    }
    return 0;
}
View Code

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!