Specific number of test/train size for each class in sklearn

丶灬走出姿态 提交于 2021-02-04 21:17:10

问题


Data:

import pandas as pd
data = pd.DataFrame({'classes':[1,1,1,2,2,2,2],'b':[3,4,5,6,7,8,9], 'c':[10,11,12,13,14,15,16]})

My code:

import numpy as np
from sklearn.cross_validation import train_test_split
X = np.array(data[['b','c']])  
y = np.array(data['classes'])     
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=4)

Question:

train_test_split will randomly choose test set from all the classes. Is there any way to have the same number of test set for each class? (For example, two data from class 1 and two data from class 2. Note that the total number of each classes are not equal)

Expected result:

y_test
array([1, 2, 2, 1], dtype=int64)

回答1:


There is actually no sklearn function or parameter to do this directly. The stratify samples proportionately, which is not what you want as you indicated in your comment.

You can build a custom function, which is relatively slower but not tremendously slow on an absolute basis. Note that this is built for pandas objects.

def train_test_eq_split(X, y, n_per_class, random_state=None):
    if random_state:
        np.random.seed(random_state)
    sampled = X.groupby(y, sort=False).apply(
        lambda frame: frame.sample(n_per_class))
    mask = sampled.index.get_level_values(1)

    X_train = X.drop(mask)
    X_test = X.loc[mask]
    y_train = y.drop(mask)
    y_test = y.loc[mask]

    return X_train, X_test, y_train, y_test

Example case:

data = pd.DataFrame({'classes': np.repeat([1, 2, 3], [10, 20, 30]),
                     'b': np.random.randn(60),
                     'c': np.random.randn(60)})
y = data.pop('classes')

X_train, X_test, y_train, y_test = train_test_eq_split(
    data, y, n_per_class=5, random_state=123)

y_test.value_counts()
# 3    5
# 2    5
# 1    5
# Name: classes, dtype: int64

How it works:

  1. Perform a groupby on X and sample n values from each group.
  2. Get the inner index of this object. This is the index for our test sets, and its set difference with the original data is our train index.


来源:https://stackoverflow.com/questions/48600684/specific-number-of-test-train-size-for-each-class-in-sklearn

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!