Keras returns binary results

天涯浪子 提交于 2021-02-02 09:56:41

问题


I want to predict the kind of 2 diseases but I get results as binary (like 1.0 and 0.0). How can I get accuracy of these (like 0.7213)?


Training code:

from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense

# Intialising the CNN
classifier = Sequential()

# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))

# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))

# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))

# Step 3 - Flattening
classifier.add(Flatten())

# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))

# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])

# Part 2 - Fitting the CNN to the images
import h5py

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale = 1./255,
                                   shear_range = 0.2,
                                   zoom_range = 0.2,
                                   horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)


training_set = train_datagen.flow_from_directory('training_set',
                                                 target_size = (64, 64),
                                                 batch_size = 32,
                                                 class_mode = 'binary')

test_set = test_datagen.flow_from_directory('test_set',
                                            target_size = (64, 64),
                                            batch_size = 32,
                                            class_mode = 'binary')


classifier.fit_generator(training_set,
                         steps_per_epoch = 100,
                         epochs = 1,
                         validation_data = test_set,
                         validation_steps = 100)

Single prediction code:

import numpy as np
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img,image

test_image = image.load_img('path_to_image', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)

print(result[0][0]) # Prints 1.0 or 0.0
# I want accuracy rate for this prediction like 0.7213

The file structures is like:

  • test_set

    • benigne
      • benigne_images
    • melignant
      • melignant_images
  • training set

Training set structure is also the same as test set.


回答1:


Update: As you clarified in the comments, you are looking for the probabilities of each class given one single test sample. Therefore you can use predict method. However, note that you must first preprocess the image the same way you have done in the training phase:

test_image /= 255.0
result = classifier.predict(test_image)

The result would be the probability of the given image belonging to class one (i.e. positive class).


If you have a generator for test data, then you can use evaluate_generator() to get the loss as well as the accuracy (or any other metric you have set) of the model on the test data.

For example, right after fitting the model, i.e. using fit_generator, you can use evaluate_generator on your test data generator, i.e. test_set:

loss, acc = evaluate_generator(test_set)


来源:https://stackoverflow.com/questions/53562493/keras-returns-binary-results

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!