问题
I am having trouble exporting a data frame to %dopar%
in foreach package. It works if I use %do%
together with registerDoSEQ()
, but with registerDoParallel()
I always get:
Error in { : task 1 failed - "object 'kyphosis' not found"
Here is a reproducible example using kyphosis
data from rpart
package. I am trying to parallelize stepwise regression a little:
library(doParallel)
library(foreach)
library(rpart)
invars <- c('Age', 'Number', 'Start')
n_vars <- 2
vars <- length(invars)
iter <- trunc(vars/n_vars)
threads <- 4
if (vars%%n_vars == 0) iter <- iter - 1
iter <- 0:iter
cl <- makeCluster(threads)
registerDoParallel(cl)
#registerDoSEQ()
terms <- ''
min_formula <- paste0('Kyphosis~ 1', terms)
fit <- glm(formula = as.formula(min_formula), data = kyphosis, family = 'binomial')
out <- foreach(x = iter, .export = 'kyphosis') %dopar% {
nv <- invars[(x * n_vars + 1):(min(x * n_vars + n_vars, vars))]
sfit <- step(object = fit, trace =FALSE, scope = list(
lower = min_formula,
upper = as.formula(paste(min_formula, '+', paste0(nv, collapse = '+')))),
steps = 1, direction = 'forward')
aic <- sfit$aic
names(aic) <- if(nrow(sfit$anova) == 2) sfit$anova$Step[2]
aic
}
out
stopCluster(cl)
回答1:
Add this in the body of foreach
before calling step
function:
.GlobalEnv$kyphosis <- kyphosis
I'm not sure why this happens, but my intuion is that step
calls glm
inside itself using information stored in fit$call
, which is
glm(formula = as.formula(min_formula), family = "binomial", data = kyphosis)
with new updated formula, but the part data = kyphosis
remains the same. So glm
tries to look for kyphosis
in the global environment.
来源:https://stackoverflow.com/questions/33022388/export-variable-in-foreach