问题
My mini-shell program accepts pipe command, for example, ls -l | wc -l
and uses excevp to execute these commands.
My problem is if there is no fork() for execvp, the pipe command works well but the shell terminates afterward. If there is a fork() for execvp, dead loop happens. And I cannot fix it.
code:
void run_pipe(char **args){
int ps[2];
pipe(ps);
pid_t pid = fork();
pid_t child_pid;
int child_status;
if(pid == 0){ // child process
close(1);
close(ps[0]);
dup2(ps[1], 1);
//e.g. cmd[0] = "ls", cmd[1] = "-l"
char ** cmd = split(args[index], " \t");
//if fork here, program cannot continue with infinite loop somewhere
if(fork()==0){
if (execvp(cmd[0],cmd)==-1){
printf("%s: Command not found.\n", args[0]);
}
}
wait(0);
}
else{ // parent process
close(0);
close(ps[1]);
dup2(ps[0],0);
//e.g. cmd[0] = "wc", cmd[1] = "-l"
char ** cmd = split(args[index+1], " \t");
//if fork here, program cannot continue with infinite loop somewhere
if(fork()==0){
if (execvp(cmd[0],cmd)==-1){
printf("%s: Command not found.\n", args[0]);
}
}
wait(0);
waitpid(pid, &child_status, 0);
}
}
I know fork() is needed for excevp in order to not terminate the shell program, but I still cannot fix it. Any help will be appreciated, thank you!
How should I make two children parallel?
pid = fork();
if( pid == 0){
// child
} else{ // parent
pid1 = fork();
if(pid1 == 0){
// second child
} else // parent
}
is this correct?
回答1:
Yes, execvp()
replaces the program in which it is called with a different one. If you want to spawn another program without ending execution of the one that does the spawning (i.e. a shell) then that program must fork()
to create a new process, and have the new process perform the execvp()
.
Your program source exhibits a false parallelism that probably either confuses you or reflects a deeper confusion. You structure the behavior of the first child forked in just the same way as the behavior of the parent process after the fork, but what should be parallel is the behavior of the first child and the behavior of the second child.
One outcome is that your program has too many forks. The initial process should fork exactly twice -- once for each child it wants to spawn -- and neither child should fork because it's already a process dedicated to one of the commands you want to run. In your actual program, however, the first child does fork. That case is probably rescued by the child also wait()
ing for the grandchild, but it's messy and poor form.
Another outcome is that when you set up the second child's file descriptors, you manipulate the parent's, prior to forking, instead of manipulating the child's after forking. Those changes will persist in the parent process, which I'm pretty confident is not what you want. This is probably why the shell seems to hang: when run_pipe()
returns (the shell's standard input has been changed to the read end of the pipe).
Additionally, the parent process should close both ends of the pipe after the children have both been forked, for more or less the same reason that the children must each close the end they are not using. In the end, there will be exactly one open copy of the file descriptor for each end of the pipe, one in one child and the other in the other. Failing to do this correctly can also cause a hang under some circumstances, as the processes you fork may not terminate.
Here's a summary of what you want the program to do:
- The original process sets up the pipe.
- The original process forks twice, once for each command.
- Each subprocess manipulates its own file descriptors to use the correct end of the pipe as the appropriate standard FD, and closes the other end of the pipe.
- Each subprocess uses
execvp()
(or one of the other functions in that family) to run the requested program - the parent closes its copies of the file descriptors for both ends of the pipe
- the parent uses
wait()
orwaitpid()
to collect two children.
Note, too, that you should check the return values of all your function calls and provide appropriate handling for errors.
来源:https://stackoverflow.com/questions/36156341/pipe-function-in-linux-shell-write-in-c