问题
Hi I am trying to generate steady state probabilities for a transition probability matrix. Here is the code I am using:
import numpy as np
one_step_transition = array([[0.125 , 0.42857143, 0.75 ],
[0.75 , 0.14285714, 0.25 ],
[0.125 , 0.42857143, 0. ]])
def steady_state_prop(p):
dim = p.shape[0]
q = (p-np.eye(dim))
ones = np.ones(dim)
q = np.c_[q,ones]
QTQ = np.dot(q, q.T)
bQT = np.ones(dim)
return np.linalg.solve(QTQ,bQT)
steady_state_matrix = steady_state_prop(one_step_transition.transpose())
print (steady_state_matrix)
#result is :
#array([0.38268793, 0.39863326, 0.21867882])
#Expected Result = (0.4,0.4,0.2)
My question is why the outcome is slightly different from exact answer?
回答1:
The expected result is wrong. For the steady state the product of the transition matrix and the steady state must be the steady state again.
tobe = np.array(((0.4, 0.4, 0.2)))
print(tobe)
print(np.dot(one_step_transition.T, tobe))
print()
result = steady_state_prop(one_step_transition)
print(result)
print(np.dot(one_step_transition.T, result))
print()
Output is
[0.4 0.4 0.2]
[0.37142857 0.40714286 0.22142857]
[0.38268793 0.39863326 0.21867882]
[0.38268793 0.39863326 0.21867882]
So your functions seems to be correct, the result you expect is not.
来源:https://stackoverflow.com/questions/52137856/steady-state-probabilities-markov-chain-python-implementation