问题
This is just a nitpicking syntactic question...
I have a dataframe, and I want to use list comprehension to evaluate a function using lots of columns.
I know I can do this
df['result_col'] = [some_func(*var) for var in zip(df['col_1'], df['col_2'],... ,df['col_n'])]
I would like to do something like this
df['result_col'] = [some_func(*var) for var in zip(df[['col_1', 'col_2',... ,'col_n']])]
i.e. not having to write df
n
times. I cannot for the life of me figure out the syntax.
回答1:
this should work, but honestly, OP figured it himself as well, so +1 OP :)
df['result_col'] = [some_func(*var) for var in zip(*[df[col] for col in ['col_1', 'col_2',... ,'col_n']])]
回答2:
As mentioned in the comments above, you should use apply
instead:
df['reult_col'] = df.apply(lambda x: some_func(*tuple(x.values)), axis=1)
回答3:
# print 3rd col
def some_func(row):
print(row[2])
df['result_col'] = [some_func(*row) for row in zip(df[['col_1', 'col_2',... ,'col_n']].to_numpy())]
or
# print 3rd col
def some_func(row):
print(row[2])
df['result_col'] = [some_func(row[0]) for row in zip(df[['col_1', 'col_2',... ,'col_n']].to_numpy())]
or
# print 3rd col
def some_func(x):
print(x)
df['result_col'] = [some_func(row[0][2]) for row in zip(df[['col_1', 'col_2',... ,'col_n']].to_numpy())]
See also:
- Memory efficient way for list comprehension of pandas dataframe using multiple columns
- list comprehension in pandas
来源:https://stackoverflow.com/questions/52607864/pandas-list-comprehension-tuple-from-dataframe