问题
I want to train and test Kohonen network which is a kind of (Self Organizing Maps).
My problem is that I get all the outputs with same values either 0000 or 1111 each time even though I'm using random weights matrix which will differ each time I'm running the code!
My data-set is 3 tiny text files on the link below: note that I'm using samples from my train data first to check if my code is correct before to use the test data.
data-sets link
#==============================================================
#Import necessary Libraries
#---------------------------
import random
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from Kohonen_Funcs import Train,Test
#=============================================================
# Reading Data
#=============================================================
patient = pd.read_fwf('patient.txt', header = None, delimiter="\t",keep_default_na=False)
control = pd.read_fwf('control.txt', header = None, delimiter="\t",keep_default_na=False)
#-------------------------------------------------------------
test = np.loadtxt('test_dud_ten.txt', delimiter="\t",dtype = str,max_rows=4)
#xt = test[:,0:650].astype(float)
#-------------------------------------------------------------
#=============================================================
# convert Data into Arrays to deal with.
#=============================================================
xp = np.array(patient,dtype = float)
xp = np.roll(xp, 10,axis = 1) # shift data on time axis by 10 to be aligned
xc = np.array(control,dtype = float)
xt = np.vstack((xp[0:2,:],xc[0:2,:]))
#-------------------------------------------------------------
#=========================
# Initial Parameters:
#=========================
Alpha = 0.6 # Learning Ratio
W = np.random.random((2,650))# Weights random Array 2 Rows 650 Columns
iter = 50 # Number of iterations
#print(W,'\n')
#========================
# Training
#========================
W_Tr , t_used = Train(xp,xc,W,Alpha,iter)
#print(W_Tr)
#------------------------------------
#========================
# Testing
#========================
Result = Test(xt,W_Tr)
print(Result)
#------------------------------------
And here is The Functions that I'm using:
#==============================================================
#Import necessary Libraries
#---------------------------
import matplotlib.pyplot as plt
import numpy as np
import time
#=============================================================
def winner(dist): # dist : 2 x 650 array
D = np.sum(dist,axis=1) # sum all values on time axis
first_w = D[0]
second_w = D[1]
if first_w < second_w: # if first w was closer (shorter distance)
return 0
else:
return 1
#------------------------------------
#=============================================================
def Train(x1,x2,Wr,a,iterations):
tic = time.time() # set a timer
subjects_range = int(2*x1.shape[0]) # 20
#--------------------------------------
x1 = np.vstack((x1,x1)) # 20x650
# Rearrange the array to make each group of 2 rows is similar
x1 = x1[np.ix_([0,10,1,11,2,12,3,13,4,14,5,15,6,16,7,17,8,18,9,19])]
#-------------------------------------------------------------------
x2 = np.vstack((x2,x2)) # 20x650
# Rearrange the array to make each group of 2 rows is similar
x2 = x2[np.ix_([0,10,1,11,2,12,3,13,4,14,5,15,6,16,7,17,8,18,9,19])]
#--------------------------------------
Dist1 = Dist2 = np.zeros_like(Wr)
for epoch in range(iterations):
for subject in range(0,subjects_range,2):
#-----------------( Dist : 2 x 20 )-----------------------
# Patient subjects
Dist1 = (Wr - x1[subject:subject+2,:])**2
win1 = winner(Dist1)
Wr[win1,:]+= a*(x1[subject,:]-Wr[win1,:]) # W1 = a * (X1-W1)
#---------------------------------------------------------
# Control subjects
Dist2 = (Wr - x2[subject:subject+2,:])**2
win2 = winner(Dist2)
Wr[win2,:]+= a*(x2[subject,:]-Wr[win2,:]) # W2 = a * (X2-W2)
#---------------------------------------------------------
a *= 0.5 # update Learning Ratio after each epoch
#===============================
toc = time.time() # reset the timer, and get time used
t_used = toc - tic
return Wr , t_used
#------------------------------------
#=============================================================
def Test(test,W):
output = [] # list to store the output
subjects_range = int(2*test.shape[0]) # 8
xt = np.vstack((test,test)) # 8 x 650
# Rearrange the array to make each group of 2 rows is similar
xt = xt[np.ix_([0,4,1,5,2,6,3,7])]
dist = np.zeros_like(xt) # 8 x 650
for subject in range(0,subjects_range,2):
# for each subject calculate distance
dist[subject:subject+2,:] = (xt[subject:subject+2,:] - W)**2
# for each subject get to which class it belongs
win = winner(dist[subject:subject+2,:])
print(subject,'win = ',win)
output.append(win)
return output
回答1:
The whole problem was in the weights, since they are initialized randomly, there is no guarantee that the result will be correct, instead of W = np.random.random((2,650))
I Initialized the weights manually, and got a correct results.
来源:https://stackoverflow.com/questions/60360517/self-organizing-map-isnt-working-perfectly-same-class-always-as-output