AcWing 1319. 移棋子游戏

不想你离开。 提交于 2020-03-07 14:33:58

sg函数是一张有向无环图
尼姆博弈对每一张图sg(值)进行游戏
就是加强版的集合尼姆博弈(集合尼姆博弈中拓展是根据集合可能的新状态),这里是回归本质,sg操作是对每个状态拓展出边,并通过出边sg值集合进行mex操作,来求当前点的sg值

vector<int>G[2005];
int fg[2005];
int n, m, k, x,y;
int sg(int x)
{
	if (fg[x] != -1)return fg[x];
	unordered_set<int> s;
	for(auto i:G[x])
		s.insert(sg(i));
	for (int i = 0;;++i)//mex
		if (!s.count(i))return fg[x] = i;
}
int main()
{		
	cin >> n >> m >> k;
	f(i, 1, m)
	{
		scanf("%d%d", &x, &y);
		G[x].emplace_back(y);
	}
	int ans = 0;
	memset(fg, -1, sizeof fg);
	f(i, 1, k)
	{
		scanf("%d", &x);
		ans ^= sg(x);//每个棋子位置的sg
		//debug(sg(x));
	}
	if (ans == 0)puts("lose");
	else puts("win");
	return 0;
}
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!