证法一:
令 A=21+5,B=21−5
由斐波那契数列的通项公式F(n)=5An+Bn可得
F(n+1)F(n−1)=51(An+1+Bn+1)(An−1+Bn−1)
F(n)2=51(An+Bn)2
证明:
F(n+1)F(n−1)−F(n)2
=−51(2AnBn−An+1Bn−1−An−1Bn+1)
=−51[AnBn−1(B−A)−An−1Bn(A−B)]
=51(A−B)(AnBn−1+AnBn)
=51(A+B)(A−B)An−1Bn−1
=51∗1∗(−1)∗(2∗2(1−5)∗(1+5))n−1
=(−1)∗(−1)n−1
=(−1)n
证法二: