问题
The title kind of says it all. I'm looking to compute the GCD of two polynomials. Is there any way this can be done in Prolog? If so, what's a good starting point? Specifically, I'm having trouble with how to implement polynomial division using Prolog.
Edit to include example input and output:
Example input:
?- GCD(x^2 + 7x + 6, x2 − 5x − 6, X).
Example output:
X = x + 1.
Solution
On the off chance that someone else needs to do this, here's my final solution:
tail([_|Tail], Tail).
head([Head | _], Head).
norm(Old, N, New) :-
length(Tail, N),
append(New, Tail, Old).
norm(Old, N, []) :-
length(Old, L),
N > L.
mult_GCD(List, GCD) :- length(List, L),
L > 2, tail(List, Tail),
mult_GCD(Tail, GCD).
mult_GCD([H | T], GCD) :-
length(T, L),
L == 1, head(T, N),
gcd(H, N, GCD).
lead(List, List) :-
length(List, L),
L == 1.
lead([0 | Tail], Out) :-
!, lead(Tail, Out).
lead([Head | Tail], [Head | Tail]) :- Head =\= 0.
poly_deg([], 0).
poly_deg(F, D) :-
lead(F, O),
length(O, N),
D is N - 1.
poly_red([0], [0]).
poly_red(Poly, Out) :-
mult_GCD(Poly, GCD),
scal_div(Poly, GCD, Out).
poly_sub(Poly,[],Poly) :- Poly = [_|_].
poly_sub([],Poly,Poly).
poly_sub([P1_head|P1_rest], [P2_head|P2_rest], [PSub_head|PSub_rest]) :-
PSub_head is P1_head-P2_head,
poly_sub(P1_rest, P2_rest, PSub_rest).
scal_prod([],_Sc,[]).
scal_prod([Poly_head|Poly_rest], Sc, [Prod_head|Prod_rest]) :-
Prod_head is Poly_head*Sc,
scal_prod(Poly_rest, Sc, Prod_rest).
scal_div([],_,[]).
scal_div([Poly_head|Poly_rest], Sc, [Prod_head|Prod_rest]) :-
Prod_head is Poly_head / Sc,
scal_div(Poly_rest, Sc, Prod_rest).
poly_div(Num, Den, OutBuild, Out) :-
poly_deg(Num, X),
poly_deg(Den, Y),
X < Y,
Out = OutBuild.
poly_div(INum, IDen, OutBuild, Out) :-
lead(INum, [NumHead | NumTail]), lead(IDen, [DenHead | DenTail]),
Q is NumHead / DenHead,
append(OutBuild, [Q], Out1),
append([DenHead], DenTail, DenNorm), append([NumHead], NumTail, Num),
scal_prod(DenNorm, Q, DenXQ),
poly_sub(Num, DenXQ, N),
poly_div(N, IDen, Out1, Out).
poly_mod(Num, Den, Out) :-
poly_deg(Num, X), poly_deg(Den, Y),
X < Y,
lead(Num, Out1),
poly_red(Out1, Out2),
lead(Out2, Out).
poly_mod(INum, IDen, Out) :-
lead(INum, [NumHead | NumTail]), lead(IDen, [DenHead | DenTail]),
Q is NumHead / DenHead,
append([DenHead], DenTail, DenNorm), append([NumHead], NumTail, Num),
scal_prod(DenNorm, Q, DenXQ),
poly_sub(Num, DenXQ, N),
poly_mod(N, IDen, Out).
poly_gcd(X, Y, X):- poly_deg(Y, O), O == 0, !.
poly_gcd(Y, X, X):- poly_deg(Y, O), O == 0, !.
poly_gcd(X, Y, D):- poly_deg(X, Xd), poly_deg(Y, Yd), Xd > Yd, !, poly_mod(X, Y, Z), poly_gcd(Y, Z, D).
poly_gcd(X, Y, D):- poly_mod(Y, X, Z), poly_gcd(X, Z, D).
gcd(X, Y, Z) :-
X < 0, X > Y, !,
X1 is X - Y,
gcd(-X, Y, Z).
gcd(X, Y, Z) :-
Y < 0, Y >= X, !,
Y1 is Y - X,
gcd(X, -Y, Z).
gcd(X, 0, X).
gcd(0, Y, Y).
gcd(X, Y, Z) :-
X > Y, Y > 0,
X1 is X - Y,
gcd(Y, X1, Z).
gcd(X, Y, Z) :-
X =< Y, X > 0,
Y1 is Y - X,
gcd(X, Y1, Z).
gcd(X, Y, Z) :-
X > Y, Y < 0,
X1 is X + Y,
gcd(Y, X1, Z).
gcd(X, Y, Z) :-
X =< Y, X < 0,
Y1 is Y + X,
gcd(X, Y1, Z).
回答1:
This answer is meant as a push in the right direction.
First, forget for a moment that you need to parse an expression like x^2 + 7x + 6
; this isn't even a proper term in Prolog yet. If you tried to write it on the top level, you will get an error:
?- Expr = x^2 + 7x + 6.
ERROR: Syntax error: Operator expected
ERROR: Expr = x^2 +
ERROR: ** here **
ERROR: 7x + 6 .
Prolog doesn't know how to deal with the 7x
you have there. Parsing the expression is a question of its own, and maybe it is easier if you assumed you have already parsed it and gotten a representation that looks for example like this:
[6, 7, 1]
Similarly, x^2 − 5x − 6
becomes:
[-6, -5, 1]
and to represent 0 you would use the empty list:
[]
Now, take a look at the algorithm at the Wikipedia page. It uses deg
for the degree and lc
for the leading coefficient. With the list representation above, you can define those as:
The degree is one less then the length of the list holding the coefficients.
poly_deg(F, D) :-
length(F, N),
D is N - 1.
The leading coefficient is the last element of the list.
poly_lc(F, C) :-
last(F, C).
You also need to be able to do simple arithmetic with polynomials. Using the definitions on the Wikipedia page, we see that for example adding []
and [1]
should give you [1]
, multiplying [-2, 2]
with [1, -3, 1]
should give you [-2, 8, -8, 2]
. A precursory search gave me this question here on Stackoverflow. Using the predicates defined there:
?- poly_prod([-2,2], [1, -3, 1], P).
P = [-2.0, 8.0, -8.0, 2] .
?- poly_sum([], [1], S).
S = [1].
From here on, it should be possible for you to try and implement polynomial division as outlined in the Wiki article I linked above. If you get into more trouble, you should edit your question or ask a new one.
来源:https://stackoverflow.com/questions/39711616/using-prolog-to-compute-the-gcd-of-a-polynomial