问题
How do you generate all the permutations of a list in Python, independently of the type of elements in that list?
For example:
permutations([])
[]
permutations([1])
[1]
permutations([1, 2])
[1, 2]
[2, 1]
permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
回答1:
Starting with Python 2.6 (and if you're on Python 3) you have a standard-library tool for this: itertools.permutations.
import itertools
list(itertools.permutations([1, 2, 3]))
If you're using an older Python (<2.6) for some reason or are just curious to know how it works, here's one nice approach, taken from http://code.activestate.com/recipes/252178/:
def all_perms(elements):
if len(elements) <=1:
yield elements
else:
for perm in all_perms(elements[1:]):
for i in range(len(elements)):
# nb elements[0:1] works in both string and list contexts
yield perm[:i] + elements[0:1] + perm[i:]
A couple of alternative approaches are listed in the documentation of itertools.permutations
. Here's one:
def permutations(iterable, r=None):
# permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
# permutations(range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = range(n)
cycles = range(n, n-r, -1)
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
And another, based on itertools.product
:
def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):
if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)
回答2:
And in Python 2.6 onwards:
import itertools
itertools.permutations([1,2,3])
(returned as a generator. Use list(permutations(l))
to return as a list.)
回答3:
The following code with Python 2.6 and above ONLY
First, import itertools
:
import itertools
Permutation (order matters):
print list(itertools.permutations([1,2,3,4], 2))
[(1, 2), (1, 3), (1, 4),
(2, 1), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 4),
(4, 1), (4, 2), (4, 3)]
Combination (order does NOT matter):
print list(itertools.combinations('123', 2))
[('1', '2'), ('1', '3'), ('2', '3')]
Cartesian product (with several iterables):
print list(itertools.product([1,2,3], [4,5,6]))
[(1, 4), (1, 5), (1, 6),
(2, 4), (2, 5), (2, 6),
(3, 4), (3, 5), (3, 6)]
Cartesian product (with one iterable and itself):
print list(itertools.product([1,2], repeat=3))
[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]
回答4:
def permutations(head, tail=''):
if len(head) == 0: print tail
else:
for i in range(len(head)):
permutations(head[0:i] + head[i+1:], tail+head[i])
called as:
permutations('abc')
回答5:
#!/usr/bin/env python
def perm(a, k=0):
if k == len(a):
print a
else:
for i in xrange(k, len(a)):
a[k], a[i] = a[i] ,a[k]
perm(a, k+1)
a[k], a[i] = a[i], a[k]
perm([1,2,3])
Output:
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 2, 1]
[3, 1, 2]
As I'm swapping the content of the list it's required a mutable sequence type as input. E.g. perm(list("ball"))
will work and perm("ball")
won't because you can't change a string.
This Python implementation is inspired by the algorithm presented in the book Computer Algorithms by Horowitz, Sahni and Rajasekeran.
回答6:
This solution implements a generator, to avoid holding all the permutations on memory:
def permutations (orig_list):
if not isinstance(orig_list, list):
orig_list = list(orig_list)
yield orig_list
if len(orig_list) == 1:
return
for n in sorted(orig_list):
new_list = orig_list[:]
pos = new_list.index(n)
del(new_list[pos])
new_list.insert(0, n)
for resto in permutations(new_list[1:]):
if new_list[:1] + resto <> orig_list:
yield new_list[:1] + resto
回答7:
The following code is an in-place permutation of a given list, implemented as a generator. Since it only returns references to the list, the list should not be modified outside the generator. The solution is non-recursive, so uses low memory. Work well also with multiple copies of elements in the input list.
def permute_in_place(a):
a.sort()
yield list(a)
if len(a) <= 1:
return
first = 0
last = len(a)
while 1:
i = last - 1
while 1:
i = i - 1
if a[i] < a[i+1]:
j = last - 1
while not (a[i] < a[j]):
j = j - 1
a[i], a[j] = a[j], a[i] # swap the values
r = a[i+1:last]
r.reverse()
a[i+1:last] = r
yield list(a)
break
if i == first:
a.reverse()
return
if __name__ == '__main__':
for n in range(5):
for a in permute_in_place(range(1, n+1)):
print a
print
for a in permute_in_place([0, 0, 1, 1, 1]):
print a
print
回答8:
A quite obvious way in my opinion might be also:
def permutList(l):
if not l:
return [[]]
res = []
for e in l:
temp = l[:]
temp.remove(e)
res.extend([[e] + r for r in permutList(temp)])
return res
回答9:
In a functional style
def addperm(x,l):
return [ l[0:i] + [x] + l[i:] for i in range(len(l)+1) ]
def perm(l):
if len(l) == 0:
return [[]]
return [x for y in perm(l[1:]) for x in addperm(l[0],y) ]
print perm([ i for i in range(3)])
The result:
[[0, 1, 2], [1, 0, 2], [1, 2, 0], [0, 2, 1], [2, 0, 1], [2, 1, 0]]
回答10:
list2Perm = [1, 2.0, 'three']
listPerm = [[a, b, c]
for a in list2Perm
for b in list2Perm
for c in list2Perm
if ( a != b and b != c and a != c )
]
print listPerm
Output:
[
[1, 2.0, 'three'],
[1, 'three', 2.0],
[2.0, 1, 'three'],
[2.0, 'three', 1],
['three', 1, 2.0],
['three', 2.0, 1]
]
回答11:
I used an algorithm based on the factorial number system- For a list of length n, you can assemble each permutation item by item, selecting from the items left at each stage. You have n choices for the first item, n-1 for the second, and only one for the last, so you can use the digits of a number in the factorial number system as the indices. This way the numbers 0 through n!-1 correspond to all possible permutations in lexicographic order.
from math import factorial
def permutations(l):
permutations=[]
length=len(l)
for x in xrange(factorial(length)):
available=list(l)
newPermutation=[]
for radix in xrange(length, 0, -1):
placeValue=factorial(radix-1)
index=x/placeValue
newPermutation.append(available.pop(index))
x-=index*placeValue
permutations.append(newPermutation)
return permutations
permutations(range(3))
output:
[[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
This method is non-recursive, but it is slightly slower on my computer and xrange raises an error when n! is too large to be converted to a C long integer (n=13 for me). It was enough when I needed it, but it's no itertools.permutations by a long shot.
回答12:
Note that this algorithm has an n factorial
time complexity, where n
is the length of the input list
Print the results on the run:
global result
result = []
def permutation(li):
if li == [] or li == None:
return
if len(li) == 1:
result.append(li[0])
print result
result.pop()
return
for i in range(0,len(li)):
result.append(li[i])
permutation(li[:i] + li[i+1:])
result.pop()
Example:
permutation([1,2,3])
Output:
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
回答13:
One can indeed iterate over the first element of each permutation, as in tzwenn's answer; I prefer to write this solution this way:
def all_perms(elements):
if len(elements) <= 1:
yield elements # Only permutation possible = no permutation
else:
# Iteration over the first element in the result permutation:
for (index, first_elmt) in enumerate(elements):
other_elmts = elements[:index]+elements[index+1:]
for permutation in all_perms(other_elmts):
yield [first_elmt] + permutation
This solution is about 30 % faster, apparently thanks to the recursion ending at len(elements) <= 1
instead of 0
.
It is also much more memory-efficient, as it uses a generator function (through yield
), like in Riccardo Reyes's solution.
回答14:
This is inspired by the Haskell implementation using list comprehension:
def permutation(list):
if len(list) == 0:
return [[]]
else:
return [[x] + ys for x in list for ys in permutation(delete(list, x))]
def delete(list, item):
lc = list[:]
lc.remove(item)
return lc
回答15:
For performance, a numpy solution inspired by Knuth, (p22) :
from numpy import empty, uint8
from math import factorial
def perms(n):
f = 1
p = empty((2*n-1, factorial(n)), uint8)
for i in range(n):
p[i, :f] = i
p[i+1:2*i+1, :f] = p[:i, :f] # constitution de blocs
for j in range(i):
p[:i+1, f*(j+1):f*(j+2)] = p[j+1:j+i+2, :f] # copie de blocs
f = f*(i+1)
return p[:n, :]
Copying large blocs of memory saves time -
it's 20x faster than list(itertools.permutations(range(n))
:
In [1]: %timeit -n10 list(permutations(range(10)))
10 loops, best of 3: 815 ms per loop
In [2]: %timeit -n100 perms(10)
100 loops, best of 3: 40 ms per loop
回答16:
from __future__ import print_function
def perm(n):
p = []
for i in range(0,n+1):
p.append(i)
while True:
for i in range(1,n+1):
print(p[i], end=' ')
print("")
i = n - 1
found = 0
while (not found and i>0):
if p[i]<p[i+1]:
found = 1
else:
i = i - 1
k = n
while p[i]>p[k]:
k = k - 1
aux = p[i]
p[i] = p[k]
p[k] = aux
for j in range(1,(n-i)/2+1):
aux = p[i+j]
p[i+j] = p[n-j+1]
p[n-j+1] = aux
if not found:
break
perm(5)
回答17:
Here is an algorithm that works on a list without creating new intermediate lists similar to Ber's solution at https://stackoverflow.com/a/108651/184528.
def permute(xs, low=0):
if low + 1 >= len(xs):
yield xs
else:
for p in permute(xs, low + 1):
yield p
for i in range(low + 1, len(xs)):
xs[low], xs[i] = xs[i], xs[low]
for p in permute(xs, low + 1):
yield p
xs[low], xs[i] = xs[i], xs[low]
for p in permute([1, 2, 3, 4]):
print p
You can try the code out for yourself here: http://repl.it/J9v
回答18:
The beauty of recursion:
>>> import copy
>>> def perm(prefix,rest):
... for e in rest:
... new_rest=copy.copy(rest)
... new_prefix=copy.copy(prefix)
... new_prefix.append(e)
... new_rest.remove(e)
... if len(new_rest) == 0:
... print new_prefix + new_rest
... continue
... perm(new_prefix,new_rest)
...
>>> perm([],['a','b','c','d'])
['a', 'b', 'c', 'd']
['a', 'b', 'd', 'c']
['a', 'c', 'b', 'd']
['a', 'c', 'd', 'b']
['a', 'd', 'b', 'c']
['a', 'd', 'c', 'b']
['b', 'a', 'c', 'd']
['b', 'a', 'd', 'c']
['b', 'c', 'a', 'd']
['b', 'c', 'd', 'a']
['b', 'd', 'a', 'c']
['b', 'd', 'c', 'a']
['c', 'a', 'b', 'd']
['c', 'a', 'd', 'b']
['c', 'b', 'a', 'd']
['c', 'b', 'd', 'a']
['c', 'd', 'a', 'b']
['c', 'd', 'b', 'a']
['d', 'a', 'b', 'c']
['d', 'a', 'c', 'b']
['d', 'b', 'a', 'c']
['d', 'b', 'c', 'a']
['d', 'c', 'a', 'b']
['d', 'c', 'b', 'a']
回答19:
This algorithm is the most effective one, it avoids of array passing and manipulation in recursive calls, works in Python 2, 3:
def permute(items):
length = len(items)
def inner(ix=[]):
do_yield = len(ix) == length - 1
for i in range(0, length):
if i in ix: #avoid duplicates
continue
if do_yield:
yield tuple([items[y] for y in ix + [i]])
else:
for p in inner(ix + [i]):
yield p
return inner()
Usage:
for p in permute((1,2,3)):
print(p)
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)
回答20:
def pzip(c, seq):
result = []
for item in seq:
for i in range(len(item)+1):
result.append(item[i:]+c+item[:i])
return result
def perm(line):
seq = [c for c in line]
if len(seq) <=1 :
return seq
else:
return pzip(seq[0], perm(seq[1:]))
回答21:
Generate all possible permutations
I'm using python3.4:
def calcperm(arr, size):
result = set([()])
for dummy_idx in range(size):
temp = set()
for dummy_lst in result:
for dummy_outcome in arr:
if dummy_outcome not in dummy_lst:
new_seq = list(dummy_lst)
new_seq.append(dummy_outcome)
temp.add(tuple(new_seq))
result = temp
return result
Test Cases:
lst = [1, 2, 3, 4]
#lst = ["yellow", "magenta", "white", "blue"]
seq = 2
final = calcperm(lst, seq)
print(len(final))
print(final)
回答22:
ANOTHER APPROACH (without libs)
def permutation(input):
if len(input) == 1:
return input if isinstance(input, list) else [input]
result = []
for i in range(len(input)):
first = input[i]
rest = input[:i] + input[i + 1:]
rest_permutation = permutation(rest)
for p in rest_permutation:
result.append(first + p)
return result
Input can be a string or a list
print(permutation('abcd'))
print(permutation(['a', 'b', 'c', 'd']))
回答23:
I see a lot of iteration going on inside these recursive functions, not exactly pure recursion...
so for those of you who cannot abide by even a single loop, here's a gross, totally unnecessary fully recursive solution
def all_insert(x, e, i=0):
return [x[0:i]+[e]+x[i:]] + all_insert(x,e,i+1) if i<len(x)+1 else []
def for_each(X, e):
return all_insert(X[0], e) + for_each(X[1:],e) if X else []
def permute(x):
return [x] if len(x) < 2 else for_each( permute(x[1:]) , x[0])
perms = permute([1,2,3])
回答24:
Another solution:
def permutation(flag, k =1 ):
N = len(flag)
for i in xrange(0, N):
if flag[i] != 0:
continue
flag[i] = k
if k == N:
print flag
permutation(flag, k+1)
flag[i] = 0
permutation([0, 0, 0])
回答25:
To save you folks possible hours of searching and experimenting, here's the non-recursive permutaions solution in Python which also works with Numba (as of v. 0.41):
@numba.njit()
def permutations(A, k):
r = [[i for i in range(0)]]
for i in range(k):
r = [[a] + b for a in A for b in r if (a in b)==False]
return r
permutations([1,2,3],3)
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
To give an impression about performance:
%timeit permutations(np.arange(5),5)
243 µs ± 11.1 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
time: 406 ms
%timeit list(itertools.permutations(np.arange(5),5))
15.9 µs ± 8.61 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
time: 12.9 s
So use this version only if you have to call it from njitted function, otherwise prefer itertools implementation.
回答26:
My Python Solution:
def permutes(input,offset):
if( len(input) == offset ):
return [''.join(input)]
result=[]
for i in range( offset, len(input) ):
input[offset], input[i] = input[i], input[offset]
result = result + permutes(input,offset+1)
input[offset], input[i] = input[i], input[offset]
return result
# input is a "string"
# return value is a list of strings
def permutations(input):
return permutes( list(input), 0 )
# Main Program
print( permutations("wxyz") )
回答27:
def permutation(word, first_char=None):
if word == None or len(word) == 0: return []
if len(word) == 1: return [word]
result = []
first_char = word[0]
for sub_word in permutation(word[1:], first_char):
result += insert(first_char, sub_word)
return sorted(result)
def insert(ch, sub_word):
arr = [ch + sub_word]
for i in range(len(sub_word)):
arr.append(sub_word[i:] + ch + sub_word[:i])
return arr
assert permutation(None) == []
assert permutation('') == []
assert permutation('1') == ['1']
assert permutation('12') == ['12', '21']
print permutation('abc')
Output: ['abc', 'acb', 'bac', 'bca', 'cab', 'cba']
回答28:
Using Counter
from collections import Counter
def permutations(nums):
ans = [[]]
cache = Counter(nums)
for idx, x in enumerate(nums):
result = []
for items in ans:
cache1 = Counter(items)
for id, n in enumerate(nums):
if cache[n] != cache1[n] and items + [n] not in result:
result.append(items + [n])
ans = result
return ans
permutations([1, 2, 2])
> [[1, 2, 2], [2, 1, 2], [2, 2, 1]]
回答29:
for Python we can use itertools and import both permutations and combinations to solve your problem
from itertools import product, permutations
A = ([1,2,3])
print (list(permutations(sorted(A),2)))
来源:https://stackoverflow.com/questions/104420/how-to-generate-all-permutations-of-a-list-in-python