问题
I am tryin to learn prolog and got stuck in one of the toy example. binary_tree
is defined as:
The term '-' (the minus symbol) represents the empty tree. The term t(L,V,R) represents a tree with left subtree L, node value V, and right subtree R.
now Im trying to write the predicate size(Tree,N)
to find the size of tree. I know it is possible using the following :
size( -,0).
size( t(L, _,R), S) :- size(L,Ls), size(R,Rs), S is Ls + Rs + 1.
but I want to make it work using accumulator. I tired something like(and some other stuffs) but none is working:
size(t(L,_,R),N):-size(t(L,_,R),0,N).
size(-,A,A).
size(t(L,_,R),A,N):- A1 is A+1,size(L,A1,N1),size(R,A1,N2), N is N1+N2.
for example for test case:
size(t(-,n,t(-,m,-)),N).
I get 5
instead of 2
.
here is the trace:
[debug] [7] 85 ?- trace,size(t(-,n,t(-,m,-)),N).
Call: (73) size(t(-, n, t(-, m, -)), _G10307) ? creep
Call: (74) size(t(-, _G10422, t(-, m, -)), 0, _G10307) ? creep
Call: (75) _G10435 is 0+1 ? creep
Exit: (75) 1 is 0+1 ? creep
Call: (75) size(-, 1, _G10437) ? creep
Exit: (75) size(-, 1, 1) ? creep
Call: (75) size(t(-, m, -), 1, _G10437) ? creep
Call: (76) _G10438 is 1+1 ? creep
Exit: (76) 2 is 1+1 ? creep
Call: (76) size(-, 2, _G10440) ? creep
Exit: (76) size(-, 2, 2) ? creep
Call: (76) size(-, 2, _G10440) ? creep
Exit: (76) size(-, 2, 2) ? creep
Call: (76) _G10441 is 2+2 ? creep
Exit: (76) 4 is 2+2 ? creep
Exit: (75) size(t(-, m, -), 1, 4) ? creep
Call: (75) _G10307 is 1+4 ? creep
Exit: (75) 5 is 1+4 ? creep
Exit: (74) size(t(-, _G10422, t(-, m, -)), 0, 5) ? creep
Exit: (73) size(t(-, n, t(-, m, -)), 5) ? creep
N = 5.
I feel I need to have two different accumulator but not sure how do that.I would appreciate any explanation (rather than straight answer) since I am trying to learn this stuff.
回答1:
You are counting subtrees twice:
size(t(L,_,R),A,N):- A1 is A+1,size(L,A1,N1),size(R,A1,N2), N is N1+N2.
^^ ^^ ^^^^^^^^
The value A1
is used twice. What you actually want is to describe a difference (not a difference list but something very similar).
size(-, N,N). % N-N ... 0
size(t(L,_,R), N0,N) :- % N-N0 ... the total size
N1 is N0+1, % N1-N0 ... 1
size(L, N1,N2), % N2-N1 ... size of L
size(R, N2,N). % N-N2 ... size of R
Please remark the pattern for the variables. The first is N0
and the last is N
. They are spread almost shoelace-like.
来源:https://stackoverflow.com/questions/24714985/size-of-tree-using-accumulator