问题
I have some machine learning results that I am trying to make sense of. The task is to predict/label "Irish" vs. "non-Irish". Python 2.7's output:
1= ir
0= non-ir
Class count:
0 4090942
1 940852
Name: ethnicity_scan, dtype: int64
Accuracy: 0.874921350119
Classification report:
precision recall f1-score support
0 0.89 0.96 0.93 2045610
1 0.74 0.51 0.60 470287
avg / total 0.87 0.87 0.87 2515897
Confusion matrix:
[[1961422 84188]
[ 230497 239790]]
AUC-ir= 0.901238104773
As you can see, the precision and recall are mediocre, but the AUC-ROC is higher (~0.90). And I am trying to figure out why, which I suspect is due to data imbalance (about 1:5). Based on the confusion matrix, and using Irish as the target (+), I calculated the TPR=0.51 and FPR=0.04. If I am considering non-Irish as (+), then TPR=0.96 and FPR=0.49. So how can I get a 0.9 AUC while the TPR can be only 0.5 at FPR=0.04?
Codes:
try:
for i in mass[k]:
df = df_temp # reset df before each loop
#$$
#$$
if 1==1:
###if i == singleEthnic:
count+=1
ethnicity_tar = str(i) # fr, en, ir, sc, others, ab, rus, ch, it, jp
# fn, metis, inuit; algonquian, iroquoian, athapaskan, wakashan, siouan, salish, tsimshian, kootenay
############################################
############################################
def ethnicity_target(row):
try:
if row[ethnicity_var] == ethnicity_tar:
return 1
else:
return 0
except: return None
df['ethnicity_scan'] = df.apply(ethnicity_target, axis=1)
print '1=', ethnicity_tar
print '0=', 'non-'+ethnicity_tar
# Random sampling a smaller dataframe for debugging
rows = df.sample(n=subsample_size, random_state=seed) # Seed gives fixed randomness
df = DataFrame(rows)
print 'Class count:'
print df['ethnicity_scan'].value_counts()
# Assign X and y variables
X = df.raw_name.values
X2 = df.name.values
X3 = df.gender.values
X4 = df.location.values
y = df.ethnicity_scan.values
# Feature extraction functions
def feature_full_name(nameString):
try:
full_name = nameString
if len(full_name) > 1: # not accept name with only 1 character
return full_name
else: return '?'
except: return '?'
def feature_full_last_name(nameString):
try:
last_name = nameString.rsplit(None, 1)[-1]
if len(last_name) > 1: # not accept name with only 1 character
return last_name
else: return '?'
except: return '?'
def feature_full_first_name(nameString):
try:
first_name = nameString.rsplit(' ', 1)[0]
if len(first_name) > 1: # not accept name with only 1 character
return first_name
else: return '?'
except: return '?'
# Transform format of X variables, and spit out a numpy array for all features
my_dict = [{'last-name': feature_full_last_name(i)} for i in X]
my_dict5 = [{'first-name': feature_full_first_name(i)} for i in X]
all_dict = []
for i in range(0, len(my_dict)):
temp_dict = dict(
my_dict[i].items() + my_dict5[i].items()
)
all_dict.append(temp_dict)
newX = dv.fit_transform(all_dict)
# Separate the training and testing data sets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(newX, y, test_size=testTrainSplit)
# Fitting X and y into model, using training data
classifierUsed2.fit(X_train, y_train)
# Making predictions using trained data
y_train_predictions = classifierUsed2.predict(X_train)
y_test_predictions = classifierUsed2.predict(X_test)
Inserted codes for resampling:
try:
for i in mass[k]:
df = df_temp # reset df before each loop
#$$
#$$
if 1==1:
###if i == singleEthnic:
count+=1
ethnicity_tar = str(i) # fr, en, ir, sc, others, ab, rus, ch, it, jp
# fn, metis, inuit; algonquian, iroquoian, athapaskan, wakashan, siouan, salish, tsimshian, kootenay
############################################
############################################
def ethnicity_target(row):
try:
if row[ethnicity_var] == ethnicity_tar:
return 1
else:
return 0
except: return None
df['ethnicity_scan'] = df.apply(ethnicity_target, axis=1)
print '1=', ethnicity_tar
print '0=', 'non-'+ethnicity_tar
# Resampled
df_resampled = df.append(df[df.ethnicity_scan==0].sample(len(df)*5, replace=True))
# Random sampling a smaller dataframe for debugging
rows = df_resampled.sample(n=subsample_size, random_state=seed) # Seed gives fixed randomness
df = DataFrame(rows)
print 'Class count:'
print df['ethnicity_scan'].value_counts()
# Assign X and y variables
X = df.raw_name.values
X2 = df.name.values
X3 = df.gender.values
X4 = df.location.values
y = df.ethnicity_scan.values
# Feature extraction functions
def feature_full_name(nameString):
try:
full_name = nameString
if len(full_name) > 1: # not accept name with only 1 character
return full_name
else: return '?'
except: return '?'
def feature_full_last_name(nameString):
try:
last_name = nameString.rsplit(None, 1)[-1]
if len(last_name) > 1: # not accept name with only 1 character
return last_name
else: return '?'
except: return '?'
def feature_full_first_name(nameString):
try:
first_name = nameString.rsplit(' ', 1)[0]
if len(first_name) > 1: # not accept name with only 1 character
return first_name
else: return '?'
except: return '?'
# Transform format of X variables, and spit out a numpy array for all features
my_dict = [{'last-name': feature_full_last_name(i)} for i in X]
my_dict5 = [{'first-name': feature_full_first_name(i)} for i in X]
all_dict = []
for i in range(0, len(my_dict)):
temp_dict = dict(
my_dict[i].items() + my_dict5[i].items()
)
all_dict.append(temp_dict)
newX = dv.fit_transform(all_dict)
# Separate the training and testing data sets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(newX, y, test_size=testTrainSplit)
# Fitting X and y into model, using training data
classifierUsed2.fit(X_train, y_train)
# Making predictions using trained data
y_train_predictions = classifierUsed2.predict(X_train)
y_test_predictions = classifierUsed2.predict(X_test)
回答1:
Your model outputs a probability P (between 0 and 1) for each row in the test set that it scores. The summary stats (precision, recall, etc) are for a single value of P as a prediction threshold, probably P=0.5, unless you've changed this in your code. However the ROC contains more information, the idea is that you probably won't want to use this default value as your prediction threshold, so the ROC is plotted by calculating the ratio of true positives to false positives, across every prediction threshold betwen 0 and 1.
If you've undersampled your non-Irish people in the data, then you're correct that the AUC and precision will be overestimated; if your dataset is only 5000 rows, then you will have no problem running your model on a larger training set; just rebalance your dataset (by bootstrap sampling to increase your non-Irish people) until your accurately reflect your sample population.
来源:https://stackoverflow.com/questions/35688923/how-to-explain-high-auc-roc-with-mediocre-precision-and-recall-in-unbalanced-dat