问题
The problem is to count the number of of values less than the value after index. Here is the code, but I can't understand how binary indexed tree has been used to do this?
#include <iostream>
#include <vector>
#include <algorithm>
#define LL long long
#define MOD 1000000007
#define MAXN 10
using namespace std;
typedef pair<int, int> ii;
int BIT[MAXN+1];
int a[MAXN+1];
vector< ii > temp;
int countSmallerRight[MAXN+1];
int read(int idx) {
int sum = 0;
while (idx > 0) {
sum += BIT[idx];
idx -= (idx & -idx);
}
return sum;
}
void update(int idx, int val) {
while (idx <= MAXN) {
BIT[idx] += val;
idx += (idx & -idx);
}
}
int main(int argc, const char * argv[])
{
int N;
scanf("%d", &N);
for (int i = 1; i <= N; i++) {
scanf("%d", &a[i]);
temp.push_back(ii(a[i], i));
}
sort(temp.begin(), temp.end());
countSmallerRight[temp[0].second] = 0;
update(1, 1);
update(temp[0].second, -1);
for (int i = 1; i < N; i++) {
countSmallerRight[temp[i].second] = read(temp[i].second);
update(1, 1);
update(temp[i].second, -1);
}
for (int i = 1; i <= N; i++) {
printf("%d,", countSmallerRight[i]);
}
putchar('\n');
return 0;
}
It would be helpful if someone could explain the working principal of the code.
回答1:
to understand BIT this is one of the best links .
TC gives the full explaination of functions you used , but rest part is logic on how to use it .
For basic understanding :
ques: there are n heaps and in each heap initially there are 1 stones then we add stones from u to v…find how much stone are there in given heap.
the solution , with answer at each iteration is http://pastebin.com/9QJ589VR. After you understand it , try to implement your question .
来源:https://stackoverflow.com/questions/21234399/how-to-use-binary-indexed-tree-to-count-the-number-of-elements-that-is-smaller-t