聚宽源码43

戏子无情 提交于 2019-12-11 14:56:35

原文策略源码如下:

Get API 新技能,研究中写策略并回测

def initialize(context):
set_params() #1设置策参数
set_variables() #2设置中间变量
set_backtest() #3设置回测条件

g.long_day = 60 # 长均线天数
g.short_day = 120 # 短均线天数

#1
#设置策略参数
def set_params():
g.tc=15 # 调仓频率
g.N=4 # 持仓数目
g.security = [“000001.XSHE”,“000002.XSHE”,“000006.XSHE”,“000007.XSHE”,“000009.XSHE”]#设置股票池

#2
#设置中间变量
def set_variables():
return

#3
#设置回测条件
def set_backtest():
set_option(‘use_real_price’, True) #用真实价格交易
log.set_level(‘order’, ‘error’)

‘’’

每天开盘前

‘’’
#每天开盘前要做的事情
def before_trading_start(context):
set_slip_fee(context)

#4

根据不同的时间段设置滑点与手续费

def set_slip_fee(context):
# 将滑点设置为0
# set_slippage(FixedSlippage(0))

### 股票相关设定 ###
# 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')

‘’’

每天交易时

‘’’
def handle_data(context, data):
# 将总资金等分为g.N份,为每只股票配资
capital_unit = context.portfolio.portfolio_value/g.N
toSell = signal_stock_sell(context,data)
toBuy = signal_stock_buy(context,data)
# 执行卖出操作以腾出资金
for i in range(len(g.security)):
if toSell[i]==1:
order_target_value(g.security[i],0)
# 执行买入操作
for i in range(len(g.security)):
if toBuy[i]==1:
order_target_value(g.security[i],capital_unit)
if not (1 in toBuy) or (1 in toSell):
# log.info(“今日无操作”)
send_message(“今日无操作”)

#5
#获得卖出信号
#输入:context, data
#输出:sell - list
def signal_stock_sell(context,data):
sell = [0]*len(g.security)
for i in range(len(g.security)):
# 算出今天和昨天的两个指数移动均线的值,我们这里假设长线是60天,短线是1天(前一天的收盘价)
(ema_long_pre,ema_long_now) = get_EMA(g.security[i],g.long_day,data)
(ema_short_pre,ema_short_now) = get_EMA(g.security[i],g.short_day,data)
# 如果短均线从上往下穿越长均线,则为死叉信号,标记卖出
if ema_short_now < ema_long_now and ema_short_pre > ema_long_pre and context.portfolio.positions[g.security[i]].sellable_amount > 0:
sell[i]=1
return sell

#6
#获得买入信号
#输入:context, data
#输出:buy - list
def signal_stock_buy(context,data):
buy = [0]*len(g.security)
for i in range(len(g.security)):
# 算出今天和昨天的两个指数移动均线的值,我们这里假设长线是60天,短线是1天(前一天的收盘价)
(ema_long_pre,ema_long_now) = get_EMA(g.security[i],g.long_day,data)
(ema_short_pre,ema_short_now) = get_EMA(g.security[i],g.short_day,data)
# 如果短均线从下往上穿越长均线,则为金叉信号,标记买入
if ema_short_now > ema_long_now and ema_short_pre < ema_long_pre and context.portfolio.positions[g.security[i]].sellable_amount == 0 :
buy[i]=1
return buy

#7

计算移动平均线数据

输入:股票代码-字符串,移动平均线天数-整数

输出:算术平均值-浮点数

def get_MA(security_code,days):
# 获得前days天的数据,详见API
a=attribute_history(security_code, days, ‘1d’, (‘close’))
# 定义一个局部变量sum,用于求和
sum=0
# 对前days天的收盘价进行求和
for i in range(1,days+1):
sum+=a[‘close’][-i]
# 求和之后除以天数就可以的得到算术平均值啦
return sum/days

#8

计算指数移动平均线数据

输入:股票代码-字符串,移动指数平均线天数-整数,data

输出:今天和昨天的移动指数平均数-浮点数

def get_EMA(security_code,days,data):
# 如果只有一天的话,前一天的收盘价就是移动平均
if days==1:
# 获得前两天的收盘价数据,一个作为上一期的移动平均值,后一个作为当期的移动平均值
t = attribute_history(security_code, 2, ‘1d’, (‘close’))
return t[‘close’][-2],t[‘close’][-1]
else:
# 如果全局变量g.EMAs不存在的话,创建一个字典类型的变量,用来记录已经计算出来的EMA值
if ‘EMAs’ not in dir(g):
g.EMAs={}
# 字典的关键字用股票编码和天数连接起来唯一确定,以免不同股票或者不同天数的指数移动平均弄在一起了
key="%s%d" %(security_code,days)
# 如果关键字存在,说明之前已经计算过EMA了,直接迭代即可
if key in g.EMAs:
#计算alpha值
alpha=(days-1.0)/(days+1.0)
# 获得前一天的EMA(这个是保存下来的了)
EMA_pre=g.EMAs[key]
# EMA迭代计算
EMA_now=EMA_prealpha+data[security_code].close(1.0-alpha)
# 写入新的EMA值
g.EMAs[key]=EMA_now
# 给用户返回昨天和今天的两个EMA值
return (EMA_pre,EMA_now)
# 如果关键字不存在,说明之前没有计算过这个EMA,因此要初始化
else:
# 获得days天的移动平均
ma=get_MA(security_code,days)
# 如果滑动平均存在(不返回NaN)的话,那么我们已经有足够数据可以对这个EMA初始化了
if not(isnan(ma)):
g.EMAs[key]=ma
# 因为刚刚初始化,所以前一期的EMA还不存在
return (float(“nan”),ma)
else:
# 移动平均数据不足days天,只好返回NaN值
return (float(“nan”),float(“nan”))

‘’’

每天收盘后

‘’’

每日收盘后要做的事情(本策略中不需要)

def after_trading_end(context):
#得到当天所有成交记录
trades = get_trades()
for _trade in trades.values():
log.info(‘成交记录:’+str(_trade))
log.info(’##############################################################’)

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!