问题
It appears that the difference between cross-validation and training AUC ROC with H2OGradientBoostingEstimator remains high despite my best attempts using min_split_improvement.
Using the same data with GradientBoostingClassifier(min_samples_split=10) results in no overfitting, but I can find no analogue of min_samples_split.
Prepare Data
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=10000, n_features=40,
n_clusters_per_class=10,
n_informative=25,
random_state=12, shuffle=False)
features = ["x%02d" % (i) for i in range(X.shape[1])]
df = pd.DataFrame(X, columns=features)
df["y"] = y
nfolds = 5
import h2o
h2o.init()
h2of = h2o.H2OFrame(df)
h2of["y"] = h2of["y"].asfactor()
Run modeling
def print_h2o_auc(m):
print("{m} train: {a:.2%} xv: {x:.2%}".format(
m=m.model_id, a=m.auc(), x=float(m.cross_validation_metrics_summary().as_data_frame().set_index("").loc["auc","mean"])))
from h2o.estimators.gbm import H2OGradientBoostingEstimator
for msi in [0.00001, 0.0001, 0.001, 0.01, 0.1]:
m = H2OGradientBoostingEstimator(
model_id="gbm %g" % (msi),
ntrees=100, max_depth=3, min_rows=100, min_split_improvement=msi,
nfolds=5, fold_assignment="stratified",
keep_cross_validation_predictions=True, seed=1)
m.train(x=features, y="y", training_frame=h2of)
print_h2o_auc(m)
Prints
gbm 1e-05 train: 84.35% xv: 77.12%
gbm 0.0001 train: 84.35% xv: 77.12%
gbm 0.001 train: 82.71% xv: 76.53%
gbm 0.01 train: 68.06% xv: 65.49%
gbm 0.1 train: 50.00% xv: 50.00%
IOW, the difference in performance remains significant (even though it does decline).
What else can I try to reduce overfitting?
来源:https://stackoverflow.com/questions/53656780/avoiding-overfitting-with-h2ogradientboostingestimator