问题
I am running a classification model in H2O R. I would like to extract fitted model predictions for my training dataset.
Code:
train <- as.h2o(train)
test <- as.h2o(test)
y <- "class"
x <- setdiff(names(train), y)
family <- "multinomial"
nfolds <- 5
gbm1 <- h2o.gbm(x = x, y = y, distribution = family,
training_frame = train,
seed = 1,
nfolds = nfolds,
fold_assignment = "Modulo",
keep_cross_validation_predictions = TRUE)
h2o.getFrame(gbm1@model$cross_validation_predictions[[gbm1@allparameters$nfolds]]$name)[,2:4]
回答1:
Here is a simple example of how to extract the cross-validated predictions from a trained H2O model in R (using the Iris dataset).
library(h2o)
h2o.init(nthreads = -1)
data(iris)
train <- as.h2o(iris)
y <- "Species"
x <- setdiff(names(train), y)
family <- "multinomial"
nfolds <- 5
gbm1 <- h2o.gbm(x = x, y = y,
distribution = family,
training_frame = train,
seed = 1,
nfolds = nfolds,
fold_assignment = "Modulo",
keep_cross_validation_predictions = TRUE)
cvpreds_id <- gbm1@model$cross_validation_holdout_predictions_frame_id$name
cvpreds <- h2o.getFrame(cvpreds_id)
The cvpreds
object is an H2OFrame that looks like this:
> cvpreds
predict setosa versicolor virginica
1 setosa 0.9986012 0.0008965135 0.0005022631
2 setosa 0.9985695 0.0004486762 0.0009818434
3 setosa 0.9981387 0.0004777671 0.0013835724
4 setosa 0.9985246 0.0006259377 0.0008494549
5 setosa 0.9989924 0.0005033832 0.0005042294
6 setosa 0.9981410 0.0013581692 0.0005008536
[150 rows x 4 columns]
来源:https://stackoverflow.com/questions/43054383/r-h2o-how-can-i-get-my-trained-model-predictions-probabilities