What is the ε (epsilon) parameter in Locality Sensitive Hashing (LSH)?

好久不见. 提交于 2019-12-11 01:37:10

问题


I've read the original paper about Locality Sensitive Hashing.

The complexity is in function of the parameter ε, but I don't understand what it is.

Can you explain its meaning please?


回答1:


ε is the approximation parameter.

LSH (as FLANN & kd-GeRaF) is designed for high dimensional data. In that space, k-NN doesn't work well, in fact it is almost as slow as brute force, because of the curse of dimensionality.

For that reason, we focus on solving the aproximate k-NN. Check Definition 1 from our paper, which basically say that it's OK to return an approximate neighbor lying in (1 + ε) further distance than the exact neighbor.

Check the image below:

here you see what does it mean finding the exact/approximate NN. In the traditional problem of NNS (Nearest Neighbor Search), we are asked to find the exact NN. In the modern problem, the approximate NNS, we are asked to find some neighbor inside the (1+ε) radius, thus either the exact or approximate NN would be a valid answer!

So, with a high probability, LSH will return a NN inside that (1+ε) radius. For ε = 0, we actually solve the exact NN problem.



来源:https://stackoverflow.com/questions/37358467/what-is-the-%ce%b5-epsilon-parameter-in-locality-sensitive-hashing-lsh

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!