问题
I've got a protocol:
protocol Adjustable: Equatable {
associatedtype T
var id: String { get set }
var value: T { get set }
init(id: String, value: T)
}
And a struct that conforms to it:
struct Adjustment: Adjustable {
static func == (lhs: Adjustment, rhs: Adjustment) -> Bool {
return lhs.id == rhs.id
}
typealias T = CGFloat
var id: String
var value: T
}
And I'm building a wrapper class that behaves like a Set
to handle an ordered list of these properties:
struct AdjustmentSet {
var adjustmentSet: [Adjustable] = []
func contains<T: Adjustable>(_ item: T) -> Bool {
return adjustmentSet.filter({ $0.id == item.id }).first != nil
}
}
let brightness = Adjustment(id: "Brightness", value: 0)
let set = AdjustmentSet()
print(set.contains(brightness))
But that of course doesn't work, erroring with:
error: protocol 'Adjustable' can only be used as a generic constraint because it has Self or associated type requirements var adjustmentSet: [Adjustable] = []
Looking around, I thought at first this was because the protocol doesn't conform to Equatable
, but then I added it, and it still doesn't work (or I did it wrong).
Moreover, I would like to be able to use a generic here, so that I can do something like:
struct Adjustment<T>: Adjustable {
static func == (lhs: Adjustment, rhs: Adjustment) -> Bool {
return lhs.id == rhs.id
}
var id: String
var value: T
}
let brightness = Adjustment<CGFloat>(id: "Brightness", value: 0)
Or:
struct FloatAdjustment: Adjustable {
static func == (lhs: Adjustment, rhs: Adjustment) -> Bool {
return lhs.id == rhs.id
}
typealias T = CGFloat
var id: String
var value: T
}
let brightness = FloatAdjustment(id: "Brightness", value: 0)
And still be able to store an array of [Adjustable]
types, so that eventually I can do:
var set = AdjustmentSet()
if set.contains(.brightness) {
// Do something!
}
Or
var brightness = ...
brightness.value = 1.5
set.append(.brightness)
回答1:
You can't have an array of items of type Adjustable
, because Adjustable
isn't really a type. It's a blue print that describes a set of types, one per every possible value of T
.
To get around this, you need to use a type eraser https://medium.com/dunnhumby-data-science-engineering/swift-associated-type-design-patterns-6c56c5b0a73a
回答2:
Have made some great progress using Alexander's suggestion; I was able to use some nested class types to inherit the base type erasure class, and use a generic protocol that conforms to AnyHashable
so I can use this with a set!
// Generic conforming protocol to AnyHashable
protocol AnyAdjustmentProtocol {
func make() -> AnyHashable
}
protocol AdjustmentProtocol: AnyAdjustmentProtocol {
associatedtype A
func make() -> A
}
struct AdjustmentTypes {
internal class BaseType<T>: Hashable {
static func == (lhs: AdjustmentTypes.BaseType<T>, rhs: AdjustmentTypes.BaseType<T>) -> Bool {
return lhs.name == rhs.name
}
typealias A = T
var hashValue: Int { return name.hashValue }
let name: String
let defaultValue: T
let min: T
let max: T
var value: T
init(name: String, defaultValue: T, min: T, max: T) {
self.name = name
self.defaultValue = defaultValue
self.min = min
self.max = max
self.value = defaultValue
}
}
class FloatType: BaseType<CGFloat> { }
class IntType: BaseType<Int> { }
}
struct AnyAdjustmentType<A>: AdjustmentProtocol, Hashable {
static func == (lhs: AnyAdjustmentType<A>, rhs: AnyAdjustmentType<A>) -> Bool {
return lhs.hashValue == rhs.hashValue
}
private let _make: () -> AnyHashable
private let hashClosure:() -> Int
var hashValue: Int {
return hashClosure()
}
init<T: AdjustmentProtocol & Hashable>(_ adjustment: T) where T.A == A {
_make = adjustment.make
hashClosure = { return adjustment.hashValue }
}
func make() -> AnyHashable {
return _make()
}
}
struct Brightness: AdjustmentProtocol, Hashable {
func make() -> AnyHashable {
return AdjustmentTypes.FloatType(name: "Brightness", defaultValue: 0, min: 0, max: 1)
}
}
struct WhiteBalance: AdjustmentProtocol, Hashable {
func make() -> AnyHashable {
return AdjustmentTypes.IntType(name: "White Balance", defaultValue: 4000, min: 3000, max: 7000)
}
}
let brightness = Brightness().make()
let whiteBalance = WhiteBalance().make()
var orderedSet = Set<AnyHashable>()
orderedSet.insert(brightness)
print(type(of: orderedSet))
print(orderedSet.contains(brightness))
for obj in orderedSet {
if let o = obj as? AdjustmentTypes.FloatType {
print(o.value)
}
if let o = obj as? AdjustmentTypes.IntType {
print(o.value)
}
}
Prints:
Set<AnyHashable>
true
0.0
Special thanks to this article: https://medium.com/@chris_dus/type-erasure-in-swift-84480c807534 which had a simple and clean example on how to implement a generic type eraser.
来源:https://stackoverflow.com/questions/54836085/storing-objects-conforming-to-a-protocol-with-generics-in-a-typed-array