transforming projection matrices computed from trifocal tensor to estimate 3D points

久未见 提交于 2019-12-09 13:05:24

问题


I am using this legacy code: http://fossies.org/dox/opencv-2.4.8/trifocal_8cpp_source.html for estimating 3D points from the given corresponding 2D points from 3 different views. The problem I faced is same as stated here: http://opencv-users.1802565.n2.nabble.com/trifocal-tensor-icvComputeProjectMatrices6Points-icvComputeProjectMatricesNPoints-td2423108.html

I could compute Projection matrices successfully using icvComputeProjectMatrices6Points. I used 6 set of corresponding points from 3 views. Results are shown below:

projMatr1 P1 = 
[-0.22742541, 0.054754492, 0.30500898, -0.60233182;
  -0.14346679, 0.034095913, 0.33134204, -0.59825808;
  -4.4949986e-05, 9.9166318e-06, 7.106331e-05, -0.00014547621]

projMatr2 P2 = 
[-0.17060626, -0.0076031247, 0.42357284, -0.7917347;
  -0.028817834, -0.0015948272, 0.2217239, -0.33850163;
  -3.3046148e-05, -1.3680664e-06, 0.0001002633, -0.00019192585]

projMatr3 P3 = 
[-0.033748217, 0.099119112, -0.4576003, 0.75215244;
  -0.001807699, 0.0035084449, -0.24180284, 0.39423448;
  -1.1765103e-05, 2.9554356e-05, -0.00013438619, 0.00025332544]

Furthermore, I computed 3D points using icvReconstructPointsFor3View. The six 3D points are as following:

4D points = 
[-0.4999997, -0.26867214, -1, 2.88633e-07, 1.7766099e-07, -1.1447386e-07;
  -0.49999994, -0.28693244, 3.2249036e-06, 1, 7.5971762e-08, 2.1956141e-07;
  -0.50000024, -0.72402155, 1.6873783e-07, -6.8603946e-08, -1, 5.8393886e-07;
  -0.50000012, -0.56681377, 1.202426e-07, -4.1603233e-08, -2.3659911e-07, 1]

While, actual 3D points are as following:

   - { ID:1,X:500.000000, Y:800.000000, Z:3000.000000}
   - { ID:2,X:500.000000, Y:800.000000, Z:4000.000000}
   - { ID:3,X:1500.000000, Y:800.000000, Z:4000.000000}
   - { ID:4,X:1500.000000, Y:800.000000, Z:3000.000000}
   - { ID:5,X:500.000000, Y:1800.000000, Z:3000.000000}
   - { ID:6,X:500.000000, Y:1800.000000, Z:4000.000000}

My question is now, how to transform P1, P2 and P3 to a form that allows a meaningful triangulation? I need to compute the correct 3D points using trifocal tensor.


回答1:


The trifocal tensor won't help you, because like the fundamental matrix, it only enables projective reconstruction of the scene and camera poses. If X0_j and P0_i are the true 3D points and camera matrices, this means that the reconstructed points Xp_j = inv(H).X0_j and camera matrices Pp_i = P0_i.H are only defined up to a common 4x4 matrix H, which is unknown.

In order to obtain a metric reconstruction, you need to know the calibration matrices of your cameras. Whether you know these matrices (e.g. if you use virtual cameras for image rendering) or you estimated them using camera calibration (see OpenCV calibration tutorials), you can find a method to obtain a metric reconstruction in §7.4.5 of "Geometry, constraints and computation of the trifocal tensor", by C.Ressl (PDF).

Note that even when using this method, you cannot obtain an up-to-scale 3D reconstruction, unless you have some additional knowledge (such as knowledge of the actual distance between two fixed 3D points).

Sketch of the algorithm:

Inputs: the three camera matrices P1, P2, P3 (projective world coordinates, with the coordinate system chosen so that P1=[I|0]), the associated calibration matrices K1, K2, K3 and one point correspondence x1, x2, x3.

Outputs: the three camera matrices P1_E, P2_E, P3_E (metric reconstruction).

  1. Set P1_E=K1.[I|0]

  2. Compute the fundamental matrices F21, F31. Denoting P2=[A|a] and P3=[B|b], you have F21=[a]x.A and F31=[b]x.B (see table 9.1 in [HZ00]), where for a 3x1 vector e [e]x = [0,-e_3,e_2;e_3,0,-e_1;-e_2,e_1,0]

  3. Compute the essential matrices E21 = K2'.F21.K1 and E31 = K3'.F31.K1

  4. For i = 2,3, do the following

    i. Compute the SVD Ei1=U.S.V'. If det(U)<0 set U=-U. If det(V)<0 set V=-V.

    ii. Define W=[0,-1,0;1,0,0;0,0,1], Ri=U.W.V' and ti = third column of U

    iii. Define M=[Ri'.ti]x, X1=M.inv(K1).x1 and Xi=M.Ri'.inv(Ki).xi

    iv. If X1_3.Xi_3<0, set Ri=U.W'.V' and recompute M and X1

    v. If X1_3<0 set ti = -ti

    vi. Define Pi_E=Ki.[Ri|ti]

  5. Do the following to retrieve the correct scale for t3 (consistantly to the fact that ||t2||=1):

    i. Define p2=R2'.inv(K2).x2 and p3=R3'.inv(K3).x3

    ii. Define M=[p2]x

    iii. Compute the scale s=(p3'.M.R2'.t2)/(p3'.M.R3'.t3)

    iv. Set t3=t3*s

  6. End of the algorithm: the camera matrices P1_E, P2_E, P3_E are valid up to an isotropic scaling of the scene and a change of 3D coordinate system (hence it is a metric reconstruction).

[HZ00] "Multiple view geometry in computer vision" , by R.Hartley and A.Zisserman, 2000.



来源:https://stackoverflow.com/questions/21827927/transforming-projection-matrices-computed-from-trifocal-tensor-to-estimate-3d-po

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!