状态寄存器

深入理解计算机系统(3.3)---数据传送(或者说复制)指令详解

折月煮酒 提交于 2020-01-10 08:57:02
引言   上一章我们已经介绍了汇编语言的基础部分,包括数据格式、寄存器以及操作数的标识方式,接下来我们就应该去认识一下汇编语言当中的各个指令了。这些指令大多数都非常简单,但是组合在一起却能模拟出我们程序当中想要的任何效果,确实是十分神奇的一件事。    数据传送指令   数据传送指令的目的是为了将一个数据从一个位置复制到另外一个位置。既然如此,那么数据传送指令就会包含一个源操作数和一个目的操作数,指令会将原操作数的值复制到目的操作数并覆盖。   数据传送指令一共可分为五种,分别是mov、movs、movz、push以及pop,下面LZ依次介绍一下这五个指令的作用。    mov指令   mov指令的作用是将源操作数S中的数据复制到目的操作数D中,mov指令有一个数据格式和两个操作数,因此一般的形式为[movx S D]。其中x为数据格式,S为源操作数,D为目的操作数。   这里举一个简单的例子,比如我们有一条指令为movl %edx %eax。那么它的执行过程就如下图所示。   可以看到,在指令执行之后,%edx寄存器当中的内容会被复制到%eax寄存器。需要一提的是,mov指令可以在后面加上任何数据格式,比如上面这一过程中,数据格式则为四个字节,也就是双字。因此不难推断出,我们还可以使用movb和movw去复制一个字节或者两个字节。 movs指令  

计算机基础系列一:计算机硬件

微笑、不失礼 提交于 2020-01-10 08:14:29
1、编程语言的作用及与操作系统和硬件的关系   一个完整的计算机系统包括硬件、操作系统、软件(即程序员开发的各种软件)三部分组成。   各程序员开发的软件若直接调用计算机的硬件,如硬盘读取、音频播放等,则软件不仅编写复杂同时影响开发效率,因此程序员开发的软件需通过计算机操作系统间接调用计算机各硬件。如下图:    即编写各种计算机软件的编程语言可看作程序员与计算机沟通的介质,程序员通过编程语言编写软件从而达到控制计算机的目的。 2、计算机硬件   计算机硬件(Computer hardware)是指计算机系统中由电子,机械和光电元件等组成的各种物理装置的总称。简言之,计算机硬件是构成计算机的物质基础,是计算机系统的核心。从外观上来看,微机由主机箱和外部设备组成。   根据计算机之父冯·诺依曼的划分,计算机由运算器、控制器、存储器、输入设备、输出设备五部分组成。 通常把运算器与控制器合称为中央处理器( Central Processing Unit ,CPU )。 其中: CPU是计算机的核心,负责计算机的运算及程序控制; 存储器是计算机的记忆设备,用来存放程序和数据 输入设备是计算机接收外部信息和数据的设备。常用输入设备有:键盘、鼠标、扫描仪等 输入设备是输出计算机处理后的数据。常用的输出设备有:显示器、打印机等 在计算机中,计算机各硬件是通过各类总线连接在一起的。 2.1处理器

《30天自制操作系统》笔记(12)——多任务入门

送分小仙女□ 提交于 2020-01-10 06:56:22
《30天自制操作系统》笔记(12)——多任务入门 进度回顾 上一篇 介绍了设置显示器高分辨率的方法。本篇讲一下操作系统实现多任务的方法。 什么是多任务 对程序员来说,也许这是废话,不过还是说清楚比较好。 多任务就是让电脑 同时 运行多个程序(如一边写代码一边听音乐一边下载电影)。 电脑的CPU只有固定有限的那么一个或几个, 不可能 真的同时运行多个程序。所以就用近似的方式,让多个程序 轮换 着运行。当轮换速度够快(0.01秒),给人的 感觉 就是"同时"运行了。 多任务之不实用版 我们首先从最基本的想法开始,做一个不实用版的多任务作为例子。在学习这个例子的过程中引入真正的多任务必须的TSS、TR、far模式JMP的概念,为后续内容打基础。 当你向CPU发出任务切换的指令时,CPU会先把寄存器中的值全部 写入 内存某处;然后,从内存另一位置把所有寄存器的值 读取 出来。这就完成了一次任务切换。 任务切换消耗的时间就是读写内存消耗的时间,大概为 0.0001秒 。 任务状态段TSS 存取全部寄存器的值这件事,当然需要有一个数据结构,这就是 "任务状态段" (Task Status Segment)简称TSS。 1 struct TSS32 2 { 3 int backlink, esp0, ss0, esp1, ss1, esp2, ss2, cr3; 4 int eip,

深入理解计算机系统(3.5)---特殊的算术操作指令详解

南楼画角 提交于 2020-01-10 03:50:23
引言   上一章我们讨论了常见的算术与逻辑运算指令,其中比较有特点的是leal指令,本章我们再来看几个比较特殊的操作指令,这些指令可以让只有32位的寄存器存储64位的数据,是不是十分霸气侧漏呢。 初识   我们先来看看这些指令的大致介绍,如果各位看过上一章的话,会发现这里的指令有的会有些眼熟,但是它们的作用却截然不同。以下是书中的一张概图。   第一个指令有些眼熟吧,它就是我们上一章当中的imul乘法指令的双字形式。不过可以看出,这里的imull指令已经完全变了味道,它将结果存入两个寄存器。接下来,我们来仔细看看这些指令。 imull、mull指令   这两个指令一看就是双胞胎,它们一个负责有符号全64位乘法,一个负责无符号全64位乘法。细心的猿友会发现,imull这个指令好像是负责乘法的指令,而且在之前的乘法并没有区分有符号和无符号,现在怎么又成双胞胎指令了。   我们上一章当中出现的指令是imul指令,当它操作双字的时候,也就是imull指令。不过不同的是,它的一般形式是imull S D,这里有两个操作数,它将计算S和D的乘积并截断为双字,然后存储在D当中。由于在截断时,无符号以及有符号的二进制序列是一样的,因此此处的乘法指令并不区分有符号和无符号。   本次我们讨论的imull指令,则与上面的普通乘法指令稍有不同,它只有一个操作数,也就是说,它的一般形式为imull S

深入理解计算机系统(3.4)------算术和逻辑操作

拟墨画扇 提交于 2020-01-10 01:50:15
  上一篇博客 我们介绍了几种数据传送指令,包括MOV,MOVS,MOVZ,PUSH和POP等,理解起来也不算难。本篇博客我们来接着看汇编语言的算术与逻辑运算指令,算术无非就是加减乘除,而逻辑运算也就是与或非,移位等操作。下面这张图是汇编里面的算术和逻辑操作:      上面除了 leal(加载有效地址)指令通常用来执行简单的算术操作,其余的指令都是标准的一元或者二元操作,下面我们分别来介绍这几个指令操作。 1、leal 指令   leal 指令也称为加载有效地址(load effective address)指令,它实际上是 movl 指令的变形。它的指令形式是从存储器读数据到寄存器,但实际上它根本没有引用存储器。   它的第一个操作数看上去是一个存储器引用,但该指令并不是从指定的位置读取数据,而是将有效地址写入到目的操作数,类似于 C 语言的取地址操作符“&”。另外就是作普通的算术运算。   leal 立即数,寄存器   这类指令就是将立即数装载至寄存器,比如 leal $0x01,%eax 这种情况下 和 movl $0x01,%eax 的效果是等价的    leal 地址,寄存器   leal指令的作用是将地址加载到寄存器,对于leal S,D而言,就是实现了 &S –> D 的功能    leal S, D 结果是&S -> D   movl S,D 结果是S -> D

深入理解计算机系统(3.4)---算数与逻辑运算指令详解

耗尽温柔 提交于 2020-01-10 01:49:14
引言   上一章我们已经着重讨论了数据传送(或者说复制)指令,相信各位猿友现在都已经对此有一些了解了。说真的,LZ在看第三章的过程中,不断的被汇编的魅力深深的震撼,这些看似简单的汇编指令,却可以将复杂的程序井然有序的执行完毕,实在是让人惊叹。时至今日, 这本看似枯燥无比却实则魅力十足的书,已经深深的将LZ吸引了。   希望各位猿友也有这样的感觉,这是一种非常好的感觉,接下来,各位就一起和LZ来认识认识新的指令吧。 算术与逻辑运算指令   算术与逻辑运算包括很多种,估计各位猿友也能很快的想出来,比如最常见的加减乘除、与或非、左移右移等等。这里可能还有一个各位猿友不太容易想到的,就是取地址运算符,不过这个运算指令却是LZ看过这一部分之后,觉得最精妙的一个指令。   接下来LZ将书中的一个表格贴上来,各位猿友可以先大致浏览下里面的指令。   这里面比较特别的指令就是leal(取地址指令),其余的指令都是比较常规的算术和逻辑运算,相比之下还比较好理解,因此LZ这里重点介绍leal指令,对于其余的指令LZ不会一一介绍,接下来我们就认识一下这个特别的leal指令吧。 leal指令   leal指令是非常神奇的一个指令,它可以取一个存储器操作数的地址,并且将其赋给目的操作数。如果用C语言当中来对应的话,它就相当于&运算。   比如对于leal 4(%edx,%edx,4),%eax这条指令来讲

处理器CPU运算位数

自作多情 提交于 2020-01-10 01:43:36
处理器CPU运算位数 CPU的位宽对CPU性能的影响绝不亚于主频。位宽是指微处理器一次执行指令的数据带宽。处理器的寻址位宽增长很快,业界已使用过4、8、16位寻址再到目前主流的32位,而64位寻址浮点运算已经逐步成为CPU的主流产品。 受虚拟和实际内存尺寸的限制,目前主流的32位CPU在性能执行模式方面存在一个严重的缺陷:当面临大量的数据流时,32位的寄存器(注:为了处理数据,暂时储存结果,或者做间接寻址等等动作,每个处理器都具备一些内建的内存,这些能够在不延迟的状态下存取的内存就称为“寄存器”,每个寄存器的大小都相同)和指令集不能及时进行相应的处理运算。 32位CPU一次只能处理32位,也就是4个字节的数据;而64位CPU一次就能处理64位即8个字节的数据。如果我们将总长128位的指令分别按照16位、32位、64位为单位进行编辑的话:旧的16位CPU(如Intel 80286 CPU)需要8个指令,32位的CPU需要4个指令,而64位CPU则只要两个指令。显然,在工作频率相同的情况下,64位CPU的处理速度比16位、32位的更快。 位宽原理示意图 可以比较一下图中的32位与64位CPU,64位的代码流的数量没有改变,其宽度随着指令代码的宽度而变化;而数据流的宽度则增加了一倍。虽然理论上在一个时钟周期内64位系统处理的数据量是32位系统的两倍,但理论和现实通常都是有差距的。

计算机系统硬件有哪些重要的部件呢?

元气小坏坏 提交于 2020-01-09 23:55:58
在计算机系统中,中央 处理器 能直接访问的唯一的存储空间是内存储器 。任何程序和数据必须被装入内存储器之后,中央处理器才能对它们进行操作,因而一个作业必须把它的程序和数据存储在内存储器中才能运行,而且 操作系统 本身也要存储在内存储器中并运行。 如果是多道程序系统,就会有若干个程序和相关的数据要存储在内存储器中。操作系统要管理、保护这些程序和数据,使它们不至于受到破坏,不会互相影响和出现冲突。内存储器以及与存储器管理有关的硬件机构是支持操作系统运行的硬件环境的一个重要方面。 此外,IO系统和时钟部件也是计算机硬件的重要组成部分,为计算机用户交互及计算机时间系统提供基础 本节介绍与操作系统密切相关的计算机硬件部件的知识,具体见以下内容。 一、存储系统 1、存储器的类型 (1)类型 在微型计算机中使用的半导体存储器有若干种不同的类型,但基本上可划分为两类: 一种是读写型的存储器,另一种是只读型的存储器 。 所谓读写型的存储器,是指可以把数据存入其中任一地址单元,并且可在以后的任何时候把数据读出来,或者重新存入新的数据的一种存储器 。这种类型的存储器常被称为 随机访问存储器( Random Access Memory,RAM) 。RAM主要用作存储随机存取的程序的数据。 另一种是 只读型的存储器,只能从其中读取数据,但不能随意地用普通的方法向其中写入数据

C中的volatile用法

女生的网名这么多〃 提交于 2020-01-09 00:29:50
.volatile的本质: 1> 编译器的优化 在本次线程内, 当读取一个变量时,为提高存取速度,编译器优化时有时会先把变量读取到一个寄存器中;以后,再取变量值时,就直接从寄存器中取值;当变量值在本线程里改变时,会同时把变量的新值copy到该寄存器中,以便保持一致。 当变量在因别的线程等而改变了值,该寄存器的值不会相应改变,从而造成应用程序读取的值和实际的变量值不一致。 当该寄存器在因别的线程等而改变了值,原变量的值不会改变,从而造成应用程序读取的值和实际的变量值不一致。 2>volatile应该解释为“直接存取原始内存地址”比较合适,“易变的”这种解释简直有点误导人。 volatile 影响编译器编译的结果,指出,volatile 变量是随时可能发生变化的,与volatile变量有关的运算,不要进行编译优化,以免出错,(VC++ 在产生release版可执行码时会进行编译优化,加volatile关键字的变量有关的运算,将不进行编译优化。)。 例如: volatile int i=10; int j = i; ... int k = i; volatile 告诉编译器i是随时可能发生变化的,每次使用它的时候必须从i的地址中读取,因而编译器生成的可执行码会重新从i的地址读取数据放在k中。 而 优化做法是,由于编译器发现两次从i读数据的代码之间的代码没有对i进行过操作

C语言volatile关键字的用法

ぐ巨炮叔叔 提交于 2020-01-08 18:25:21
作用 编辑 简单地说就是防止编译器对代码进行优化。比如如下程序: 1 2 3 4 XBYTE[2]=0x55; XBYTE[2]=0x56; XBYTE[2]=0x57; XBYTE[2]=0x58; 对外部硬件而言,上述四条语句分别表示不同的操作,会产生四种不同的动作,但是编译器却会对上述四条语句进行优化,认为只有XBYTE[2]=0x58(即忽略前三条语句,只产生一条机器代码)。如果键入 volatile ,则编译器会逐一地进行编译并产生相应的机器代码(产生四条代码)。 例子 编辑 精确地说就是,编译器在用到这个变量时必须每次都小心地重新读取这个变量的值,而不是使用保存在 寄存器 里的备份。下面是volatile变量的几个例子: 1)并行设备的硬件寄存器(如:状态寄存器) 2)一个中断服务子程序中会访问到的非自动变量(Non-automatic variables) 3)多线程应用中被几个任务共享的变量 这是区分C程序员和 嵌入式系统 程序员的最基本的问题:嵌入式系统程序员经常同硬件、中断、RTOS等等打交道,所有这些都要求使用volatile变量。不懂得volatile内容将会带来灾难。 假设被面试者正确地回答了这个问题(嗯,怀疑是否会是这样),我将稍微深究一下,看一下这家伙是不是真正懂得volatile完全的重要性。 1)一个参数既可以是const还可以是volatile吗