傅里叶变换的推导
三角函数形式: f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n c o s ( n w t ) + b n s i n ( n w t ) ] (1) f(t)=\frac{a_0}{2}+\sum_{n=1}^\infty[~a_ncos(nwt)+b_nsin(nwt)~] \tag{1} f ( t ) = 2 a 0 + n = 1 ∑ ∞ [ a n c o s ( n w t ) + b n s i n ( n w t ) ] ( 1 ) a 0 = 2 T ∫ − π π f ( t ) d t (2) a_{0}=\frac{2}{T} \int_{-\pi}^{\pi} f(t) d t \tag{2} a 0 = T 2 ∫ − π π f ( t ) d t ( 2 ) a n = 2 T ∫ t 0 t 0 + T f ( t ) c o s ( n w t ) d t (3) a_n=\frac{2}{T}\int_{t_0}^{t_0+T}f(t)cos(nwt)dt \tag{3} a n = T 2 ∫ t 0 t 0 + T f ( t ) c o s ( n w t ) d t ( 3 ) b n = 2 T ∫ t 0 t 0 + T f ( t ) c o s ( n w