神经网络

如何理解FPGA的亚稳态

狂风中的少年 提交于 2021-01-13 17:00:34
长按二维码关注公众号后台回复 【 理解亚稳态 】 可获取文档 扫 码 关 注 一 起 畅 聊 深 耕 在 F P G A 扎 根 于 视 频 领 域 卓 越 于 神 经 网 络 本文分享自微信公众号 - 瓜大三哥(xiguazai_tortoise)。 如有侵权,请联系 support@oschina.cn 删除。 本文参与“ OSC源创计划 ”,欢迎正在阅读的你也加入,一起分享。 来源: oschina 链接: https://my.oschina.net/u/4584824/blog/4473650

路径规划基础知识

谁都会走 提交于 2021-01-13 15:22:07
[TOC] 定义 蒋新松[1]在文献中为路径规划作出了这样的定义:路径规划是自治式移动机器人的一个重要组成部分,它的任务就是在具有障碍物的环境内按照一定的评价标准,寻找一条从起始状态(包括位置和姿态)到达目标状态(包括位置和姿态)的无碰路径。障碍物在环境中的不同分布情况当然直接影响到规划的路径,而目标位置的确定则是由更高一级的任务分解模块提供的。 [1]蒋新松著.机器人学导论[M].辽宁科学技术出版社,1994:511-554 分类 路径规划分为依据已获取的全局环境信息,给机器人规划出一条从起点至终点的运动路径的全局路径规划方法(GlobalPath Planning)和侧重考虑机器人探知的当前局部环境信息,这使机器人具有较好的避碰能力的局部路径规划方法(LocalPath Planning)。 全局路径规划 全局路径规划规划方法的精确程度取决于获取环境信息的准确程度。通常可以寻找最优解,但需要预先知道准确的全局环境信息。 局部路径规划 局部规划仅依靠传感系统实时感知的信息,与全局规划方法相比,局部规划更具实时性和实用性;对动态环境具有较强适应能力;但是由于仅依靠局部信息,有时会产生局部极值点或振荡,无法保证机器人能顺利地到达目标点。 方法 传统规划算法 人工势场法 最初是1986年出Khatib提出,其基本思想是将移动机器人在环境中的运动视为一种虚拟人工受力场中的运动

人工智能十年回顾:CNN、AlphaGo、GAN……它们曾这样改变世界

China☆狼群 提交于 2021-01-13 11:27:43
作者:RAM SAGAR 机器之心编译 编辑:蛋酱、魔王 原文链接: https://mp.weixin.qq.com/s/NTjTg-enUjArb2umkhcVIg ​ mp.weixin.qq.com 注:文末附【深度学习与自然语言处理】交流群,最近赶ACL,比较忙,很多同学加了没有回过期了,可以重新加一下,备注好的一定会回复,敬请谅解。 盘点 AI 十年来取得的重要突破。 过去十年间,人工智能技术突飞猛进,最疯狂的科幻小说场景现在已经成为我们生活中不可或缺的一部分。十年前,人们在谈论 AI 的理论化和实验,但这些年来,AI 变得更加切实了,也变成了主流。无论是国际标准课程、平台、库、框架、硬件,一切都顺理成章。就算说这十年里取得的成绩奠定了未来的基础,也不为过。 这篇文章将盘点 AI 十年来取得的重要突破。 卷积 2012 年是深度学习历史上重要的一年。那一年,卷积神经网络(CNN)在著名的 ImageNet 挑战赛中大放异彩。由 Alex Krizhevsky 等人设计的卷积神经网络「Alexnet」以远超第二名的成绩夺冠,在 ImageNet 数据集上的视觉识别错误率为 15.3%,降低了一半。该神经网络对猫的检测准确度达到了 74.8%,在 YouTube 视频中检测人脸的准确率为 81.7%。 现在,手机和商场中的人脸识别应用都应该归功于 2012 年的这项工作

显卡、显卡驱动、显存、GPU、CUDA、cuDNN

流过昼夜 提交于 2021-01-13 05:54:59
显卡 Video card,Graphics card,又叫显示接口卡,是一个硬件概念(相似的还有网卡),执行计算机到显示设备的数模信号转换任务,安装在计算机的主板上,将计算机的数字信号转换成模拟信号让显示器显示出来。 显卡是计算机的标配之一,计算机要显示图像就必须安装显卡。普通计算机的显卡一般是集成在主板上的。 显卡驱动 显卡驱动是显卡跟计算机连接的桥梁,可以让计算机识别到GPU硬件,是必须正确安装的,不同厂商、不同型号的GPU对应不同的显卡驱动。 非开发人员不用安装CUDA或cuDNN,但是一定要安装显卡驱动。 查看Nvidia显卡和显卡驱动版本信息: nvidia-smi 显存 又叫帧缓存,作用是用来存储GPU处理过或者即将提取的渲染数据,显存相对于GPU相当于内存对于CPU。 GPU Graphics Processing Unit,图形处理单元,GPU是显卡上的一块芯片,也是显卡的核心设备,GPU和显卡的关系类似于CPU和主板的关系。 早期的GPU主要用于图形渲染,可以让电脑显示更加逼真、细节更加丰富的图形图像,牛逼的GPU可以跑大型3D游戏显示流畅不卡顿,这也是人们对GPU或显卡的最初认识。 后来人们发现GPU还可以做更多的工作,例如执行矩阵运算和浮点运算,特别是可以用来加速神经网络模型的训练,GPU也在并行计算这条路上越走越远。可以说GPU让人工智能有了更多可能。

AI火爆干货最全整理!五套深度学习和算法学习教程和三套Python学习视频!!!限时无套路免费领取!

北城以北 提交于 2021-01-13 00:44:02
点击蓝色“ AI专栏 ”关注我 哟 选择“ 星标 ”,重磅干货,第一时间送达 这是站长第 31 期免费送丰富宝贵的干货资源与教程 本期绝对是 满满的干货 ! 获取更多资源请关注 【AI专栏】 先上车pa 01 PART 五套深度学习算法教程! 作为AI 初学者来说,最大的问题就是: 资料太多!!!看不完!!! 不知道如何取舍!!!人的精力有限!!! 因此,本次站长就为各位站友把 高效有用 的入门和进阶学习材料整理好了, 并限时无套路免费送给各位站友!!! AI学习不仅仅在于模型掌握了多少,更多的在于你的算法分析和设计能力、工程实践能力、算法模型的优化能力。 5本享誉全球的AI好书和项目 免费 送给大家 !!! 机器学习基础 《机器学习基础》来了, 一书吃透机器学习! 先总体来看,这本书分为17个章节: 从每一个章节的设置可以看出这份教材设置的非常细致,将机器学习中的基础概念拆分开来讲,想深入了解吃透深度学习的基础,按这个目录来学也是个不错的选择。 【AI专栏】 只做 干货!!! 在这里没有任何套路!你只需要 长按下方二维码 回复【 2020 】 加站长微信即可立即获取 五套深度学习和算法学习教程和三套Python学习视频!!! 现在关注他,还有机会添加他的个人微信号,进行一对一的交流,坑位有限(微信号有 5000 人的限制),大家抓紧吧! PyTorch官方教程中文版

使用TensorFlow构建面部口罩识别系统【本文源码开箱即用】

孤街浪徒 提交于 2021-01-12 23:01:44
TensorFlow和OpenCV库的复杂性使得创建自动化解决方案成为可能,从而不仅可以最大程度地提高效率和确保合规性,而且还可以挽救生命。 本文原创github作者:marshall wurangian 本文技术翻译CSDN博客作者:源代码杀手 微信公众号: 关注本公众号可获取本文代码的数据集 CSDN原文链接: https://blog.csdn.net/weixin_41194129/article/details/112390817 我们看到计算机视觉 图像识别技术在我们日常生活中的应用非常频繁。无论是通过面部识别来解锁iPhone,通过机场检查,甚至是通过收费架来捕获您通过的汽车图像,图像分类都可以使机器有效地实现我们对它们的编程。无论是上述方法还是面罩识别系统,都应将技术融入我们的日常生活中以实现社会公益。我们的目标就是这样做-创建一个每个人都可以理解图像分类如何工作的面罩识别系统,以便我们的项目可以在现实生活中的实践中应用和复制。对于好奇的人 这是我们使用TensorFlow创建面部识别系统的方式,该系统可检测您的面部边界并预测您是否实时佩戴面罩。 数据采集 首先,我们需要为训练和测试数据集收集图像。我们想创建自己的数据集,该数据集包括戴有口罩的人的图像和未戴口罩的人的图像。我们利用Python中的Selenium和BeautifulSoup库来自动化Web浏览器

怎样预训练GNN能实现更好的迁移效果?北邮等提出自监督预训练策略

微笑、不失礼 提交于 2021-01-12 09:58:45
预训练与微调之间的差异能否缓解?来自北京邮电大学、腾讯、新加坡管理大学和鹏城实验室的研究者进行了分析研究,并提出了一种针对 GNN 的自监督预训练策略。 机器之心报道,作者:小舟、陈萍。 图神经网络(GNN)已经成为图表示学习的实际标准,它通过递归地聚集图邻域的信息来获得有效的节点表示。尽管 GNN 可以从头开始训练,但近来一些研究表明:对 GNN 进行预训练以学习可用于下游任务的可迁移知识能够提升 SOTA 性能。 但是,传统的 GNN 预训练方法遵循以下两个步骤: 1)在大量未标注数据上进行预训练; 2)在下游标注数据上进行模型微调。 由于这两个步骤的优化目标不同,因此二者存在很大的差距。 近日, 来自北京邮电大学和腾讯等机构的研究者进行了分析研究以显示预训练和微调之间的差异 。为了缓解这种差异,研究者提出了 L2PGNN,这是一种针对 GNN 的自监督预训练策略。 论文链接: https:// yuanfulu.github.io/publ ication/AAAI-L2PGNN.pdf 该方法的关键点是 L2P-GNN 试图学习在预训练过程中以可迁移先验知识的形式进行微调。为了将局部信息和全局信息都编码为先验信息,研究者进一步为 L2P-GNN 设计了在节点和图级别双重适应(dual adaptation)的机制。最后研究者使用蛋白质图公开集合和书目图的新汇编进行预训练

今天的卷积网络,Yann LeCun在93年就已经玩得很溜了

牧云@^-^@ 提交于 2021-01-12 09:58:27
2卷积神经网络的成功是否超出了其发明者的想象?Yann LeCun 说:「是的,我们一直在尝试更加疯狂的写法,而它的进步却从未中断过。」 机器之心报道,作者:泽南、张倩。 手写数字识别是很多人入门神经网络时用来练手的一个项目,但就是这么简单的一个项目,最近在 reddit 上又火了一把,因为在 MIT 计算机科学和人工智能实验室,有人挖到了一个「祖师爷」级别的视频…… https://v.qq.com/x/page/p32191o2g0v.html ​ v.qq.com 这段视频录制于 1993 年,主人公是图灵奖得主 Yann LeCun(杨立昆)。彼时 LeCun 才 32 岁,刚刚进入贝尔实验室工作,而视频里机器学习识别的第一段数字 201-949-4038,是 LeCun 在贝尔实验室里的电话号码。 从这段视频中我们可以看到,LeCun 在 90 年代初创造的文本识别系统已经达到了惊人的速度和准确率,这在当时的条件下是非常难能可贵的。 这段视频由贝尔实验室自适应系统研究部门主任 Larry Jackel 拍摄(Larry 当时是 LeCun 的 boss,现任英伟达自动驾驶顾问)。视频中出镜的还有实验室负责人 Rich Howard(Larry 的 boss)和研究工程师 Donnie Henderson。Yann LeCun 本人表示:「Donnie Henderson

卷积神经网络

我们两清 提交于 2021-01-12 09:07:18
第一周    1,1 计算机视觉问题:   图片识别;目标检测:只需要检测出图片上物体的位置,做成一个盒子(不用辨别是什么物体);图片风格转移   在图片处理中,如果1000X1000的图片,进入全连接的神经网络中,x数据量太大达到3000000,太容易过拟合;所以就有了卷积神经网络    1.2 边缘检测    笔记:在前面说神经网络的前几层提取一些特征,检测出边缘,是因为输入的是一些向量,加权和之后就得到一些边缘特征;再往后把这些边缘再加权求和会得到一些人脸的部位;灰度图:用灰度表示的图,没有rgb,只有一个值表示灰度大小。   图片——过滤器(核)——另一张图片(tf.nn.conv2d;keras.conv2D)   垂直边缘检测原理:检测滤波器是左边是1右边是-1中间是0;这样如果原本的图片出现垂直边缘即图片有一部分的左边灰度值小右边灰度值大,这样再和滤波器作用之后就得到了一个比较大的值。(滤波器的作用就是滤除跟它不一样的,留下和它一样的部分这一部分值很大)         1.3 更多的边缘检测    边缘检测有很多种类:由暗到亮;由亮到暗可以都用上面的滤波器然后取绝对值。   边缘滤波器:sobel 可以用做垂直滤波器,中间的权重比较大,使得处于图像中央的权重比较大;scharr filter ;还可以任意设置9个数字当做参数,检测任意角度的边缘,在神经网络中慢慢学习

被吹的神乎其神的Python都能干什么

送分小仙女□ 提交于 2021-01-12 06:54:43
文末领取免费学习福利 1. 前言 最近几年 Python 被吹的神乎其神,很多同学都不清楚 Python 到底能干什么就盲目去学习 Python,今天小胖哥就 Python 的应用领域来简单盘点一下,让想学习 Python 的同学找对方向。 2. Python 的特点 这里就谈谈自己的看法,首先 Python 是跨平台语言,语法很简洁,很短的代码干更多的事。另外它是脚本语言,随时随地写一段脚本就可以处理数据,十分方便。同时它也是面向对象语言,对初学者十分友好。Python 在处理各个领域的类库也十分丰富,爬虫、机器学习、数据处理、图像处理等等满足了大部分领域的需要。更重要的是 Python 是一种“胶水语言”,可以轻松调用主流的 C、C++、Java 类库。但是这就是 Python 被 “吹”起来的原因吗?当然不是!如果一门语言没有实际用武之地,即使它再优秀也没有意义,也不可能优秀。 3. Python 的使用领域 接下来我们就来看看 Python 在哪些领域有实际的运用。 3.1 数据爬虫 当今互联网数据成为任何一家公司最核心的资产,但是互联网的信息非常海量,未来快速获取有用的公开信息,爬虫就派上了用场。而 Python 语言非常善于编写爬虫,通过 requests 库抓取网页数据,使用 BeautifulSoup 解析网页并清晰和组织数据就可以快速精准获取数据