rms

获取oracle的建表DLL语句

喜夏-厌秋 提交于 2019-12-09 22:47:53
get_ddl('TABLE','表名','实例名') from dual select dbms_metadata.get_ddl('TABLE','RMS_CITY','RMS') from dual 结果 CREATE TABLE "RMS"."RMS_CITY" ( "INT_ID" NUMBER(*,0) NOT NULL ENABLE, "CITY_ID" NUMBER(*,0), "LONG_SECTION" VARCHAR2(10), "CITY_NAME" VARCHAR2(32) NOT NULL ENABLE, "SHORT_NAME" VARCHAR2(8), "STATEFLAG" NUMBER(*,0), "TIME_STAMP" DATE DEFAULT sysdate, "PROVINCE_NAME" NUMBER(*,0) ) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS NOLOGGING STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE

MIDP Java implementation of SQLite DB

耗尽温柔 提交于 2019-12-07 07:27:20
问题 Are there any MIDP implementation of SQLite db available for use of sqlite db within a MIDlet, rather than using RMS. Of course, there are Floggy and OpenBaseMovil, however they are based on RMS, but are there any implementations that allows to perform operations in an sqlite db file? 回答1: There are 2 ways of doing something like that: take the open source code of SQLite (written in C) and write something similar in JavaME. nobody has done that yet. There is an ongoing effort to write a

MIDP Java implementation of SQLite DB

耗尽温柔 提交于 2019-12-05 11:52:39
Are there any MIDP implementation of SQLite db available for use of sqlite db within a MIDlet, rather than using RMS. Of course, there are Floggy and OpenBaseMovil , however they are based on RMS, but are there any implementations that allows to perform operations in an sqlite db file? There are 2 ways of doing something like that: take the open source code of SQLite (written in C) and write something similar in JavaME. nobody has done that yet. There is an ongoing effort to write a version of SQLite in C# for windows mobile but you have got to wonder what impact a move to an interpreted

RMS系统搭建过程中的几个问题

左心房为你撑大大i 提交于 2019-12-05 02:58:04
最近在测试RMS系统,遇到了几个问题,记录一下。 1、我的环境是server2016,内置数据库,与DC分离部署,client是win10,office 2013(所谓的支持RMS/IRM的应用程序) ,关于step by step,主要参考的 https://blog.csdn.net/weixin_45448056/article/details/101003244 。 2、RMS的瘫痪很可能导致被加密的文件无法恢复,因此必须考虑可靠性,实际部署建议使用外置SQL SERVER数据库。 3、中途因故重装了一次,直接在服务器管理中把角色功能删除了,重装会报错,无法创建SCP,因为第一次装的时候创建了,而这个SCP在DC上,需要去DC上删除。如果真需要重装,重装之前记得在RMS管理工具里把SCP删除。右键目录树,属性里有一个SCP选项卡。 4、安装时需要两个账号,一个admin,需要管理员账号,一个service,普通user权限即可。 5、office 2013只支持word、PPT、excel,其他诸如visio、project是不支持的。 6、客户端必须把RMS的URL加入本地信任站点,否则连接会报错。 7、RMS的服务账户(那个只有USER权限的账户)更改密码后,需要进入到IIS里,重新输入,否则RMS管理工具会打不开,URL报503。 8、权限策略模板同步如何触发

Numpy Root-Mean-Squared (RMS) smoothing of a signal

匿名 (未验证) 提交于 2019-12-03 01:48:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I have a signal of electromyographical data that I am supposed (scientific papers' explicit recommendation) to smooth using RMS. I have the following working code, producing the desired output, but it is way slower than I think it's possible. #!/usr/bin/python import numpy def rms(interval, halfwindow): """ performs the moving-window smoothing of a signal using RMS """ n = len(interval) rms_signal = numpy.zeros(n) for i in range(n): small_index = max(0, i - halfwindow) # intended to avoid boundary effect big_index = min(n, i + halfwindow) #

Spark CrossValidatorModel access other models than the bestModel?

匿名 (未验证) 提交于 2019-12-03 01:10:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am using Spark 1.6.1: Currently I am using a CrossValidator to train my ML Pipeline with various parameters. After the training process I can use the bestModel property of the CrossValidatorModel to get the Model that performed best during the Cross Validation. Are the other models of the cross validation automatically discarded or can I select a model that performed worse than the bestModel? I am asking because I am using the F1 Score metric for the cross validation but I am also interested in the weighedRecall of all of the models and

谷歌机器学习速成课程学习笔记

匿名 (未验证) 提交于 2019-12-03 00:37:01
framing tensorflow pandas framing 标签:我们要预测的真实事物:y 基本线性回归中的y变量 特征:描述数据的输入变量: x i x i 基本线性回归中的 { x 1 、 x 2 、 x 3 } { x 1 、 x 2 、 x 3 } 变量 样本:数据的特定实例: x x 有标签样本:<特征,标签>;(x, y) 用于训练模型 无标签样本 <特征,?>:(x,?) 用于对新数据做出预测 模型:可以将样本映射到预测标签: y ′ y ′ 预测由模型内部参数定义,这些内部参数是通过学习得到的 合适的特征应该是具体且可以量化的。 漂不漂亮等无法量化,太主观,能否转化为其他具体特征。比如鞋子的颜色、样式等具体的方面。 b b (bias)在有的机器学习教材中也写做 w 0 w 0 损失函数: 均方误差MSE: M S E = 1 N ∑ ( x , y ∈ D ) ( y p r e d i c t i o n ( x ) ) 2 M S E = 1 N ∑ ( x , y ∈ D ) ( y p r e d i c t i o n ( x ) ) 2 除了MSE作为损失函数,也 有其他损失函数 ,MSE不是唯一的, 也不是适用于所有情形的最佳损失函数 神经网络非凸,落到哪个最小值很大程度上取决于初始值 小批量随机梯度下降法 tensorflow 结构: 分为

tensorflow:提示找不到Adam或者RMSProp变量,Did you mean to set reuse=None in VarScope?

匿名 (未验证) 提交于 2019-12-03 00:30:01
https://blog.csdn.net/qq_25737169/article/details/77856961 https://www.baidu.com/link?url=VUL_CLGZzWEuHCKYZs2aF_Qoas3vZ7rkLW5yOhNXlMjj_mBieFmeWMhCf4lkwqCnZboolB30MDvXhJmZlehVje2XzIVz1_IJFOR2aAVD7tqjuS254z--Y94TbG5CX6oOt7gpaVBvFG-P617l44xu_LvF8f0lj49LgK34pFWlf6q&wd=&eqid=cd1c0e4400003e23000000065b28c4af ValueError: Variable d_model/d_block_2/d_vbn_2/gamma/RMSProp/ does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope? Variable discriminator/conv/weights/RMSProp/does not exist, or was not created with tf.get_variable(). Did you mean to set reuse

Get RMS from FFT

可紊 提交于 2019-12-02 18:44:40
问题 I got an array of data voltages and I want to get the RMS value from the FFT that has been applied before to that data. I've seen that RMS in time domain should be equal to RMS(fft) / sqrt(nFFT) from Parseval's Theorem, but gives me different results. I'm using these functions: 1)FFT public static VectorDPoint FFT(double[] trama, double samplingFreq) { double fs = samplingFreq; // Sampling frequency double t1 = 1 / fs; // Sample time int l = trama.Length; // Length of signal // Time vector /

MXNet:回归和分类

ⅰ亾dé卋堺 提交于 2019-12-02 15:36:27
质量声明:原创文章,内容质量问题请评论吐槽。如对您产生干扰,可私信删除。 主要参考: 李沐等:动手学深度学习-伯克利教材 文章目录 回归预测 数据预处理 数据集规模 数值型特征处理 类别型特征处理 重新划分数据集 模型构建 交叉验证模型参数 训练模型 预测 摘要: 深度框架MXNet学习笔记,以MLP+FC/Softmax实现回归“波士顿房价预测”和分类“Fashion-MNIST识别” 回归预测 数据预处理 数据集规模 train_data = pd . read_csv ( 'data/kaggle_house_price_prediction/train.csv' ) test_data = pd . read_csv ( 'data/kaggle_house_price_prediction/test.csv' ) all_features = pd . concat ( ( train_data . iloc [ : , 1 : - 1 ] , test_data . iloc [ : , 1 : ] ) ) 训练数据集包括1460个样本、 80个特征和1个标签; 测试数据集包括1459个样本和80个特征; 特征值有连续的数字(数值型特征)、离散的标签(类别型特征),甚至是缺失值“na” 合并所有特征,统一进行预处理 数值型特征处理 归一化 index = all