Spark CrossValidatorModel access other models than the bestModel?

匿名 (未验证) 提交于 2019-12-03 01:10:02

问题:

I am using Spark 1.6.1:

Currently I am using a CrossValidator to train my ML Pipeline with various parameters. After the training process I can use the bestModel property of the CrossValidatorModel to get the Model that performed best during the Cross Validation. Are the other models of the cross validation automatically discarded or can I select a model that performed worse than the bestModel?

I am asking because I am using the F1 Score metric for the cross validation but I am also interested in the weighedRecall of all of the models and not just of the model that has performed best during the crossvalidation

val folds = 6 val cv = new CrossValidator()   .setEstimator(pipeline)   .setEvaluator(new MulticlassClassificationEvaluator)   .setEstimatorParamMaps(paramGrid)   .setNumFolds(folds)  val avgF1Scores = cvModel.avgMetrics  val predictedDf = cvModel.bestModel.transform(testDf)  // Here I would like to predict as well with the other models of the cross validation 

回答1:

Spark 2.4+

SPARK-21088 CrossValidator, TrainValidationSplit should collect all models when fitting - adds support for collecting submodels.

cv = CrossValidator(..., collectSubModels=True)  model = cv.fit(...) model.subModels 

Spark < 2.4

If you want to access all intermediate models you'll have to create custom cross validator from scratch. o.a.s.ml.tuning.CrossValidator discards other model only the best one and metrics are copied to the CrossValidatorModel.

See also Pyspark - Get all parameters of models created with ParamGridBuilder



回答2:

If you're just looking to do this for experimentation as opposed to a production implementation of something, I recommend monkey-patching. Here is what I did to print out the intermediate training results. Just use CrossValidatorVerbose as a drop-in replacement for CrossValidator.

import numpy as np  from pyspark.ml.tuning import CrossValidator, CrossValidatorModel from pyspark.sql.functions import rand   class CrossValidatorVerbose(CrossValidator):      def _fit(self, dataset):         est = self.getOrDefault(self.estimator)         epm = self.getOrDefault(self.estimatorParamMaps)         numModels = len(epm)          eva = self.getOrDefault(self.evaluator)         metricName = eva.getMetricName()          nFolds = self.getOrDefault(self.numFolds)         seed = self.getOrDefault(self.seed)         h = 1.0 / nFolds          randCol = self.uid + "_rand"         df = dataset.select("*", rand(seed).alias(randCol))         metrics = [0.0] * numModels          for i in range(nFolds):             foldNum = i + 1             print("Comparing models on fold %d" % foldNum)              validateLB = i * h             validateUB = (i + 1) * h             condition = (df[randCol] >= validateLB) & (df[randCol] < validateUB)             validation = df.filter(condition)             train = df.filter(~condition)              for j in range(numModels):                 paramMap = epm[j]                 model = est.fit(train, paramMap)                 # TODO: duplicate evaluator to take extra params from input                 metric = eva.evaluate(model.transform(validation, paramMap))                 metrics[j] += metric                  avgSoFar = metrics[j] / foldNum                 print("params: %s\t%s: %f\tavg: %f" % (                     {param.name: val for (param, val) in paramMap.items()},                     metricName, metric, avgSoFar))          if eva.isLargerBetter():             bestIndex = np.argmax(metrics)         else:             bestIndex = np.argmin(metrics)          bestParams = epm[bestIndex]         bestModel = est.fit(dataset, bestParams)         avgMetrics = [m / nFolds for m in metrics]         bestAvg = avgMetrics[bestIndex]         print("Best model:\nparams: %s\t%s: %f" % (             {param.name: val for (param, val) in bestParams.items()},             metricName, bestAvg))          return self._copyValues(CrossValidatorModel(bestModel, avgMetrics)) 

NOTE: this solution also corrects what I see as a bug in v2.0.0 where the CrossValidationModel.avgMetrics are set to the sum of the metrics instead of the average.

Here is an example of the output for a simple 5-fold validation of ALS:

Comparing models on fold 1 params: {'regParam': 0.1, 'rank': 5, 'maxIter': 10}     rmse: 1.122425  avg: 1.122425 params: {'regParam': 0.01, 'rank': 5, 'maxIter': 10}    rmse: 1.123537  avg: 1.123537 params: {'regParam': 0.001, 'rank': 5, 'maxIter': 10}   rmse: 1.123651  avg: 1.123651 Comparing models on fold 2 params: {'regParam': 0.1, 'rank': 5, 'maxIter': 10}     rmse: 0.992541  avg: 1.057483 params: {'regParam': 0.01, 'rank': 5, 'maxIter': 10}    rmse: 0.992541  avg: 1.058039 params: {'regParam': 0.001, 'rank': 5, 'maxIter': 10}   rmse: 0.992541  avg: 1.058096 Comparing models on fold 3 params: {'regParam': 0.1, 'rank': 5, 'maxIter': 10}     rmse: 1.141786  avg: 1.085584 params: {'regParam': 0.01, 'rank': 5, 'maxIter': 10}    rmse: 1.141786  avg: 1.085955 params: {'regParam': 0.001, 'rank': 5, 'maxIter': 10}   rmse: 1.141786  avg: 1.085993 Comparing models on fold 4 params: {'regParam': 0.1, 'rank': 5, 'maxIter': 10}     rmse: 0.954110  avg: 1.052715 params: {'regParam': 0.01, 'rank': 5, 'maxIter': 10}    rmse: 0.952955  avg: 1.052705 params: {'regParam': 0.001, 'rank': 5, 'maxIter': 10}   rmse: 0.952873  avg: 1.052713 Comparing models on fold 5 params: {'regParam': 0.1, 'rank': 5, 'maxIter': 10}     rmse: 1.140098  avg: 1.070192 params: {'regParam': 0.01, 'rank': 5, 'maxIter': 10}    rmse: 1.139589  avg: 1.070082 params: {'regParam': 0.001, 'rank': 5, 'maxIter': 10}   rmse: 1.139535  avg: 1.070077 Best model: params: {'regParam': 0.001, 'rank': 5, 'maxIter': 10}   rmse: 1.070077 


标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!