质量声明:原创文章,内容质量问题请评论吐槽。如对您产生干扰,可私信删除。
主要参考:李沐等:动手学深度学习-伯克利教材
摘要: 深度框架MXNet学习笔记,以MLP+FC/Softmax实现回归“波士顿房价预测”和分类“Fashion-MNIST识别”
回归预测
数据预处理
数据集规模
train_data = pd.read_csv('data/kaggle_house_price_prediction/train.csv')
test_data = pd.read_csv('data/kaggle_house_price_prediction/test.csv')
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
- 训练数据集包括1460个样本、 80个特征和1个标签;
- 测试数据集包括1459个样本和80个特征;
- 特征值有连续的数字(数值型特征)、离散的标签(类别型特征),甚至是缺失值“na”
- 合并所有特征,统一进行预处理
数值型特征处理
- 归一化
index = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[index] = all_features[index].apply(lambda x: (x - x.mean()) / (x.std()))
- 缺失值处理:标准化后,特征均值为0,所以可以直接用0来替换缺失值
all_features[index] = all_features[index].fillna(0)
类别型特征处理
pd.get_dummies
进行独热编码dummy_na=True
表示将缺失类别也看做一类,进行one-hot编码。举例说明,假设特征MSZoning里面有两个类别RL和RM,以及缺失类别NaN,则将MSZoning特征扩展为MSZoning_RL、MSZoning_RM、MSZoning_NaN,再进行one-hot编码- 特征数由79增加到了331
all_features = pd.get_dummies(all_features, dummy_na=True)
重新划分数据集
- 通过
DataFrame.values
属性得到NumPy格式的数据,并转成nd.NDArray
以便于后续训练
n_train = train_data.shape[0]
train_features = nd.array(all_features[:n_train].values)
test_features = nd.array(all_features[n_train:].values)
train_labels = nd.array(train_data.SalePrice.values).reshape((-1, 1))
模型构建
- 输入层可自动确定为331
- 靠近输入层丢弃概率建议偏小
def get_net():
net = nn.Sequential()
net.add(nn.Dense(360, activation='relu'),
nn.Dropout(0.2),
nn.Dense(64, activation='relu'),
nn.Dropout(0.5),
nn.Dense(1))
net.initialize(init.Normal(sigma=0.01))
return net
交叉验证模型参数
- 训练模型
loss = gloss.L2Loss()
def log_rmse(net, features, labels):
# 将小于1的值设成1,使得取对数时数值更稳定
clipped_preds = nd.clip(net(features), 1, float('inf'))
rmse = nd.sqrt(2 * loss(clipped_preds.log(), labels.log()).mean())
return rmse.asscalar()
def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
train_ls, test_ls = [], []
train_iter = gdata.DataLoader(gdata.ArrayDataset(
train_features, train_labels), batch_size, shuffle=True)
# 这里使用了Adam优化算法,对学习率相对不那么敏感
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': learning_rate, 'wd': weight_decay})
for epoch in range(num_epochs):
for X, y in train_iter:
with autograd.record():
l = loss(net(X), y)
l.backward()
trainer.step(batch_size)
train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:
test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls
- 交叉验证:
def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = nd.concat(X_train, X_part, dim=0)
y_train = nd.concat(y_train, y_part, dim=0)
return X_train, y_train, X_valid, y_valid
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
range(1, num_epochs + 1), valid_ls,
['train', 'valid'])
print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1]))
return train_l_sum / k, valid_l_sum / k
k=5; num_epochs=100; lr=0.01; weight_decay=20; batch_size=64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse %f, avg valid rmse %f' % (k, train_l, valid_l))
训练模型
同上,交叉验证模型参数中的训练模型
预测
def train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size):
net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None,
num_epochs, lr, weight_decay, batch_size)
d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
print('train rmse %f' % train_ls[-1])
preds = net(test_features).asnumpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)
来源:https://blog.csdn.net/Augurlee/article/details/102777128