平滑滤波

图像滤波之高斯滤波介绍

孤街浪徒 提交于 2019-12-26 09:02:30
1 高斯滤波简介   了解高斯滤波之前,我们首先熟悉一下高斯噪声。高斯噪声是指它的 概率密度函数 服从 高斯分布 (即 正态分布 )的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的 功率谱密度 又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为 常数 ,是指先后信号在时间上的相关性, 高斯白噪声 包括 热噪声 和 散粒噪声 。   高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为:                          g(x)=exp( -x^2/(2 sigma^2)   其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器,高斯函数的图形:                    2 高斯滤波函数   对于图像来说,高斯滤波器是利用高斯核的一个2维的卷积算子,用于图像模糊化(去除细节和噪声)。   1) 高斯分布   一维高斯分布:          二维高斯分布:      2) 高斯核   理论上,高斯分布在所有定义域上都有非负值,这就需要一个无限大的卷积核。实际上,仅需要取均值周围3倍标准差内的值,以外部份直接去掉即可。 如下图为一个标准差为1.0的整数值高斯核。                

高斯滤波

ぃ、小莉子 提交于 2019-12-26 09:02:08
1.通俗讲,对整幅图像进行加权平均的过程。 2.十分有效的低通滤波器。 3.两种实现:1.离散化窗口滑窗卷积;2.傅里叶变换。 4.高斯函数:    (e:自然对数,≈2.71828) 5.高斯函数积分:    6.高斯分布:    7.高斯滤波性质(5个):    ( 1 )二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.   ( 2 )高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.   ( 3 )高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染 ( 噪声和细纹理 ) .而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.   ( 4 )高斯滤波器宽度 ( 决定着平滑程度 ) 是由参数σ表征的

数字图像处理------中值滤波

拟墨画扇 提交于 2019-12-26 08:53:28
一 中值滤波概念 中值滤波算法以某像素的领域图像区域中的像素值的排序为基础,将像素领域内灰度的中值代替该像素的值[1]; 如:以3*3的领域为例求中值滤波中像素5的值 图1 1)int pixel[9]中存储像素1,像素2...像素9的值; 2)对数组pixel[9]进行排序操作; 3)像素5的值即为数组pixel[9]的中值pixel[4]。 中值滤波对处理椒盐噪声非常有效。 二 中值滤波代码实现 项目工程: https://github.com/ranjiewwen/Everyday_Practice/tree/master/MedianFilter/MedianFilter/MedianFilter //中值滤波:本算法采用3*3的领域范围 void MyImage::MedianFilterOper() { //0. 准备:获取图片的宽,高和像素信息, int const num = 3 * 3; unsigned char pixel[num] = { 0 }; //保存领域的像素值 int width = m_bmpInfo.biWidth; int height = m_bmpInfo.biHeight; int widthbyte = (width * m_bmpInfo.biBitCount / 8 + 3) / 4 * 4; //保证为4的倍数 //相对于中心点

中值滤波

巧了我就是萌 提交于 2019-12-26 08:53:08
中值滤波    中值滤波法 是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值.   实现方法:   1:通过从图像中的某个采样窗口取出奇数个数据进行排序   2:用排序后的中值取代要处理的数据即可   中值滤波法对消除椒盐噪音非常有效,在光学测量条纹图象的相位分析处理方法中有特殊作用,但在条纹中心分析方法中作用不大.   中值滤波在 图像处理 中,常用于用来保护边缘信息,是经典的平滑噪声的方法   中值滤波原理   中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是 把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是去某种结构的二维滑动模 板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l), (k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为2*2,3*3区域,也可以是不同的的形状,如线状,圆形,十字 形,圆环形等。 来源: https://www.cnblogs.com/cplusplus/archive/2012/05/11/2495449.html

视频处理学习笔记(四)——几种常见的时域滤波

好久不见. 提交于 2019-12-16 23:17:09
时域与频域 视频处理归根到底还是得对图像进行处理,常见的图像处理可以大致分为时域上处理和频域上处理,为此,我们先了解一下什么是时域,什么是频域 时域是真实世界,是唯一真实存在的域,自变量是时间,即横轴是时间,纵轴是信号的变化,其动态信号x(t)是描述信号在不同时刻取值的函数; 频域最重要的性质就是它不是真实的,仅仅是一个数学构造,自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。 更多关于时域与频域的请阅读以下文章 - 什么是时域和频域 - 信号时域频域及转换 相关图像噪声可以 点击这里 均值滤波 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值 通俗的所就是用选定区域的平均值来代替该点的像素值,比如选定的区域是(3,3)的,不考虑边界,第一个区域就是(1+2+1+1+2+2+5+7+6)/9=3,所以该点的值为3。边界值不变(如果考虑边界要进行补零操作),显然这有点类似卷积,给定一个3 3(当然也可以是其他大小的区域,一般都是3 3)的卷积核如下 这就可以实现均值滤波了,当然,可以更换卷积核来实现加权平均的效果,根据上面的原理可以自己编写均值滤波的函数,网上已有很多博客实现了,这里就不在多说了

OpenCV--Python 图像平滑之中值平滑

早过忘川 提交于 2019-12-12 12:14:02
中值平滑 原理详解   中值平滑,类似于卷积,也是一种邻域运算,但计算的不是加权求和,而是对邻域中的像素点按灰度值进行排序,然后选择该组中的中值作为输出的灰度值。   比如,取以图像的位置 (1,1)为中心的 3X3 的邻域,对邻域中的像素点灰度值按从大到小进行排序, [ 11 , 21 , 31 , 125 , 141 , 165 , 190 , 234 , 234 ] [11,21,31,125,141,165,190,234,234] [ 1 1 , 2 1 , 3 1 , 1 2 5 , 1 4 1 , 1 6 5 , 1 9 0 , 2 3 4 , 2 3 4 ] 可知,141是该组灰度值的中值,那么输出图像在位置(1,1)的值便为141,以此类推,得到输出图像的所有像素点的灰度值。对边界的处理可采用多种策略,而对边界进行镜像补充是较为理想的一种选择。   中值滤波最重要的能力是去除椒盐噪声。椒盐噪声是指在图像传输系统中由于解码误差等原因,导致图像中出现孤立的白点或者黑点。 Python实现   对于python实现的中值平滑,首先利用命令 n d a r r a y [ r 1 : r 2 + 1 , c 1 : c 2 + 1 ] \mathrm{ndarray}[r_1:r_2 + 1, c_1:c_2+1] n d a r r a y [ r 1 ​ : r 2

深度学习暑期学校(加拿大、蒙特利尔,2016.8.1-7)

半世苍凉 提交于 2019-12-08 00:21:00
learning to see.pdf @lutingting 2016-11-04 16:15 字数 10899 阅读 4087 SIFT特征提取及匹配 数字图像处理 图像特征提取 SIFT特征提取及匹配 1.SIFT(Scale-invariant feature transform)算子的核心思想 2.什么是尺度空间呢? 2.1 一篇百度文库的文章关于尺度空间的分析 例子1 例子2 现实生活中的例子 2.2 SIFT中的尺度空间的概念 3.SIFT特征提取 3.1 尺度空间极值检测 3.1.1 尺度空间的建立(高斯金字塔的建立) 3.1.2 图像差分高斯金字塔(DoG)的建立 3.1.3 尺度空间中特征点的检测(DoG中极值点的检测) 3.2 关键点位置及尺度确定 3.3 关键点方向确定 3.4 特征向量生成 4.SIFT特征的匹配 5.下面是一些参考程序 5.1 5.2 1.SIFT(Scale-invariant feature transform)算子的核心思想 利用不同尺度的高斯核函数对图像进行平滑,即构造图像的尺度空间 比较不同尺度平滑后的图像差别,在某局部范围内,差别最大或者差别最小的像素点就是特征明显的点 由于SIFT特征的检测方式,使得它具有: 尺度不变性:在尺度空间内进行的特征点检测 2.什么是尺度空间呢? 2.1 一篇百度文库的文章关于尺度空间的分析

高斯滤波

柔情痞子 提交于 2019-12-07 16:08:31
第一个问题:高斯函数为什么能作为图像处理中的滤波函数? 高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号. (4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好

图像卷积与滤波的一些知识点

核能气质少年 提交于 2019-12-05 23:48:07
转自 http://blog.csdn.net/zouxy09/article/details/49080029 一、线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。 对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,这个操作就叫卷积或者协相关。卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻转,但如果矩阵是对称的,那么两者就没有什么差别了。 Correlation 和 Convolution可以说是图像处理最基本的操作,但却非常有用。这两个操作有两个非常关键的特点:它们是线性的,而且具有平移不变性shift-invariant。平移不变性指我们在图像的每个位置都执行相同的操作。线性指这个操作是线性的,也就是我们用每个像素的邻域的线性组合来代替这个像素。这两个属性使得这个操作非常简单,因为线性操作是最简单的,然后在所有地方都做同样的操作就更简单了。 实际上,在信号处理领域,卷积有广泛的意义,而且有其严格的数学定义,但在这里不关注这个。

图像平滑/滤波

北慕城南 提交于 2019-12-05 17:32:10
平滑 1.简单模糊/均值滤波: 目标图像中每一个值都是源图像相应位置的核的平均值 均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声 2.中值滤波: 将源图像对应位置的核大小个像素进行排序,得到中值,最后将核矩阵的中心点赋值为这个中值。 椒盐噪声很好的被平滑,而且也没均值那样模糊化太过于严重。 少量具有较大偏差的点会严重影响滤波结果 3.高斯滤波 源图像对应位置的核中心为中心,将核参数呈现二维高斯波形,然后将核和源图像对应位置求卷积。 参考:https://www.cnblogs.com/charlee44/p/10592588.html 缺点:破坏了边缘信息。把边缘也模糊了 4.双边滤波 https://blog.csdn.net/qq_36359022/article/details/80198890 结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。 双边滤波器的好处是可以做边缘保存(edge preserving),一般用高斯滤波去降噪,会较明显地模糊边缘,对于高频细节的保护效果并不明显。 openCV接口 void bilateralFilter( InputArray src,