NoRM

GAN使用谱归一(spectral-normalization-gan)稳定训练——tensorflow应用

杀马特。学长 韩版系。学妹 提交于 2019-12-02 01:17:35
参考代码: https://github.com/christiancosgrove/pytorch-spectral-normalization-gan 参考代码: https://github.com/heykeetae/Self-Attention-GAN 参考代码: https://github.com/taki0112/Self-Attention-GAN-Tensorflow 谱归一就是限制W,使他趋于一个分布 谱归一代码部分,可以直接复制上去,调用见下个code: weight_init = tf.random_normal_initializer(mean=0.0, stddev=0.02) weight_regularizer = None def spectral_norm(w, iteration=1): w_shape = w.shape.as_list() w = tf.reshape(w, [-1, w_shape[-1]]) #print("w:",w.shape)#w: (48, 64) #w: (1024, 128) w: (2048, 256) u = tf.get_variable("u", [1, w_shape[-1]], initializer=tf.truncated_normal_initializer(), trainable

Lazy loading in MongoDB with NoRM

别说谁变了你拦得住时间么 提交于 2019-12-02 00:52:04
问题 I have a model similar to this: (simplified) Question: public class Question { public string QuestionID { get; set; } public string Title { get; set; } public string Body { get; set; } public List<Answer> Answers { get; set; } } Answer: public class Answer { public string QuestionID { get; set; } public string Body { get; set; } } I intend to store the data in MongoDB, and would like to use NoRM with this. My question is: Is lazy loading supported? Or can I set it up to do lazy-loading on the

【深度学习】基于Pytorch的ResNet实现

橙三吉。 提交于 2019-12-01 23:39:51
目录 1. ResNet理论 2. pytorch实现 2.1 基础卷积 2.2 模块 2.3 使用ResNet模块进行迁移学习 1. ResNet理论 论文: https://arxiv.org/pdf/1512.03385.pdf 残差学习基本单元: 在ImageNet上的结果: 效果会随着模型层数的提升而下降,当更深的网络能够开始收敛时,就会出现降级问题:随着网络深度的增加,准确度变得饱和(这可能不足为奇),然后迅速降级。 ResNet模型: 2. pytorch实现 2.1 基础卷积 conv3$\times \(3 和conv1\) \times$1 基础模块 def conv3x3(in_channel, out_channel, stride=1, groups=1, dilation=1): return nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_channel, out_channel, stride=1): return nn.Conv2d(in_channel, out_channel, kernel_size=1,

Lazy loading in MongoDB with NoRM

女生的网名这么多〃 提交于 2019-12-01 21:06:51
I have a model similar to this: (simplified) Question: public class Question { public string QuestionID { get; set; } public string Title { get; set; } public string Body { get; set; } public List<Answer> Answers { get; set; } } Answer: public class Answer { public string QuestionID { get; set; } public string Body { get; set; } } I intend to store the data in MongoDB, and would like to use NoRM with this. My question is: Is lazy loading supported? Or can I set it up to do lazy-loading on the document store..? So that requesting a Question, also retrieves the Answers..? (both will be "posts"

TensorFlow2.0(五):张量限幅

好久不见. 提交于 2019-11-30 19:51:38
/*--> */ /*--> */ /*--> */ /*--> */ /*--> */ /*--> */ /*--> */ /*--> */ 1 maxmium()与minmium() ¶ maximum()用于限制最小值,也即是说,将一个tensor中小于指定值的元素替换为指定值: In [2]: import tensorflow as tf In [3]: a = tf.range(10) a Out[3]: <tf.Tensor: id=3, shape=(10,), dtype=int32, numpy=array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])> In [4]: tf.maximum(a, 4) Out[4]: <tf.Tensor: id=6, shape=(10,), dtype=int32, numpy=array([4, 4, 4, 4, 4, 5, 6, 7, 8, 9])> In [12]: b = tf.random.uniform([3,4], minval=1, maxval=10, dtype=tf.int32) b Out[12]: <tf.Tensor: id=36, shape=(3, 4), dtype=int32, numpy= array([[6, 7, 5, 3], [3, 2, 9, 4], [8,

用Python实现图片风格迁移,让你的图片更加的高逼格!

风流意气都作罢 提交于 2019-11-30 05:45:48
先来看下效果: 上图是老王在甘南合作的 米拉日巴佛阁 外面拍下的一张照片,采用风格迁移技术后的效果为: 一些其它效果图: 下面进入正题。 如果你依然在编程的世界里迷茫,可以加入我们的Python学习扣qun:784758214,看看前辈们是如何学习的。从基础的python脚本到web开发、爬虫、django、数据挖掘等,0基础到项目实战的资料都有整理。送给每一位python的小伙伴!每天分享学习方法和趣味实战教程,技术经验!点击加入我们的 python学习者聚集地 近年来,由深度学习所引领的人工智能(AI)技术浪潮,开始越来越广泛地应用到生活各个领域。这其中,人工智能与艺术的交叉碰撞,在相关技术领域和艺术领域引起了高度关注。就在上个月,由电脑生成的艺术品在佳士得(Christie’s)的拍卖价竟高达43.25万美元,证明人工智能不仅可以具有创造性,还可以创作出世界级的艺术品。 早些时候,有些人坚信艺术的创造力是人工智能无法替代的,艺术将是人类最后一片自留地!这不,没过多久,这片唯一的自留地也逐渐被人工智能所取代。 在这各种神奇的背后,最核心的就是基于深度学习的 风格迁移 (style transfer)技术。我将在这篇博客带领大家学习如何使用Python来快速实现图片的风格迁移。阅读完本博客后,相信你也能够创造出漂亮的艺术品。 1. 什么是图片的风格迁移? 所谓图片风格迁移

What is the most mature MongoDB driver for C#?

两盒软妹~` 提交于 2019-11-30 00:43:35
So, there are mongodb-csharp simple-mongodb NoRM as C# drivers for MongoDB available. Which one of them is the most mature and stable one? Why would you choose one over the other two? Are they production ready? The mongodb-csharp driver is about to make a huge push regarding support for typedcollections which will include full Linq support. I think you'll find that it is easy to work. The other 2 projects are also steaming ahead. If you want .NET 4.0 support, simple-mongodb would be your best bet. NoRM has a whole bunch of committers who are all great coders, so no problem with it except it

L2 normalization和L1,L2 regulation

被刻印的时光 ゝ 提交于 2019-11-30 00:09:34
L2 Normalization 第二种Normalization对于每个样本缩放到单位范数(每个样本的范数为1),主要有L1-normalization(L1范数)、L2-normalization(L2范数)等 Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(比如l1-norm,l2-norm)等于1。 p-范式的计算公式: ∣ ∣ X ∣ ∣ p = ( ( x 1 ) p + ( x 2 ) p + . . . + ( x n ) p ) 1 / p ||X||_p=((x_1)^p+(x_2)^p+...+(x_n)^p)^{1/p} ∣ ∣ X ∣ ∣ p ​ = ( ( x 1 ​ ) p + ( x 2 ​ ) p + . . . + ( x n ​ ) p ) 1 / p tensorflow中实现这一方法的函数如下: tf . nn . l2_normalize ( x , dim , epsilon = 1e - 12 , name = None ) 上式: x为输入的向量; dim为l2范化的维数,dim取值为0或0或1或[0,1]; epsilon的范化的最小值边界; 下面看个例子: #-*-coding:utf-8-*- import tensorflow as

如何训练inception网络

痞子三分冷 提交于 2019-11-29 23:45:29
其实我写的有点害怕,因为我不知道我做的对不对,电脑的GPU不行,只跑出了两个epoch的结果就跑不动了,我也不知道是不是程序真的有问题,嗯,我就是一个傻狗屌丝女。先将inception_v3原来的模型放进来用来获取logits。 from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from VGG16 import inception_utils slim = tf.contrib.slim trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev) def inception_v3_base(inputs, final_endpoint='Mixed_7c', min_depth=16, depth_multiplier=1.0, scope=None): end_points = {} if depth_multiplier <= 0: raise ValueError('depth_multiplier is not greater than zero.') depth =

Resnet理解

给你一囗甜甜゛ 提交于 2019-11-29 14:58:37
文章目录 ResNet 解析 ResNet34实现: torchvision.models 中的 resnet34 源码 ResNet 解析 Resnet 解析 ResNet34实现: from torch import nn from torch . nn import functional as F class ResidualBlaock ( nn . Module ) : def __init__ ( self , in_channel , out_channel , stride = 1 , shortcut = None ) : ''' 实现residual ''' super ( ) . __init__ ( ) self . left = nn . Sequential ( nn . Conv2d ( in_channel , out_channel , kernel_size = 3 , stride = stride , padding = 1 , bias = False ) , nn . BatchNorm2d ( out_channel ) , nn . ReLU ( inplace = True ) , nn . Conv2d ( out_channel , out_channel , kernel_size = 3 , stride = 1 ,