【深度学习】基于Pytorch的ResNet实现

橙三吉。 提交于 2019-12-01 23:39:51

1. ResNet理论

论文:https://arxiv.org/pdf/1512.03385.pdf

残差学习基本单元:

img

在ImageNet上的结果:

效果会随着模型层数的提升而下降,当更深的网络能够开始收敛时,就会出现降级问题:随着网络深度的增加,准确度变得饱和(这可能不足为奇),然后迅速降级。

ResNet模型:

2. pytorch实现

2.1 基础卷积

conv3$\times\(3 和conv1\)\times$1 基础模块

def conv3x3(in_channel, out_channel, stride=1, groups=1, dilation=1):
    return nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)

def conv1x1(in_channel, out_channel, stride=1):
    return nn.Conv2d(in_channel, out_channel, kernel_size=1, bias=False)

参数解释:

in_channel: 输入的通道数目

out_channel:输出的通道数目

stride, padding: 步长和补0

dilation: 空洞卷积中的参数

groups: 从输入通道到输出通道的阻塞连接数

feature size 计算:
output = (intput - filter_size + 2 x padding) / stride + 1

空洞卷积实际卷积核大小:

K = K + (K-1)x(R-1)
K 是原始卷积核大小
R 是空洞卷积参数的空洞率(普通卷积为1)

2.2 模块

- resnet34
    - _resnet
        - ResNet
            - _make_layer
                - block 
                    - Bottleneck
                    - BasicBlock            

Bottlenect

class Bottleneck(nn.Module):
    expansion = 4
    __constants__ = ['downsample']

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        out = self.relu(out)
        return out

BasicBlock

class BasicBlock(nn.Module):
    expansion = 1
    __constants__ = ['downsample']

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        out = self.relu(out)
        return out

2.3 使用ResNet模块进行迁移学习

import torchvision.models as models
import torch.nn as nn

class RES18(nn.Module):
    def __init__(self):
        super(RES18, self).__init__()
        self.num_cls = settings.MAX_CAPTCHA*settings.ALL_CHAR_SET_LEN
        self.base = torchvision.models.resnet18(pretrained=False)
        self.base.fc = nn.Linear(self.base.fc.in_features, self.num_cls)
    def forward(self, x):
        out = self.base(x)
        return out

class RES34(nn.Module):
    def __init__(self):
        super(RES34, self).__init__()
        self.num_cls = settings.MAX_CAPTCHA*settings.ALL_CHAR_SET_LEN
        self.base = torchvision.models.resnet34(pretrained=False)
        self.base.fc = nn.Linear(self.base.fc.in_features, self.num_cls)
    def forward(self, x):
        out = self.base(x)
        return out

class RES50(nn.Module):
    def __init__(self):
        super(RES50, self).__init__()
        self.num_cls = settings.MAX_CAPTCHA*settings.ALL_CHAR_SET_LEN
        self.base = torchvision.models.resnet50(pretrained=False)
        self.base.fc = nn.Linear(self.base.fc.in_features, self.num_cls)
    def forward(self, x):
        out = self.base(x)
        return out

class RES101(nn.Module):
    def __init__(self):
        super(RES101, self).__init__()
        self.num_cls = settings.MAX_CAPTCHA*settings.ALL_CHAR_SET_LEN
        self.base = torchvision.models.resnet101(pretrained=False)
        self.base.fc = nn.Linear(self.base.fc.in_features, self.num_cls)
    def forward(self, x):
        out = self.base(x)
        return out

class RES152(nn.Module):
    def __init__(self):
        super(RES152, self).__init__()
        self.num_cls = settings.MAX_CAPTCHA*settings.ALL_CHAR_SET_LEN
        self.base = torchvision.models.resnet152(pretrained=False)
        self.base.fc = nn.Linear(self.base.fc.in_features, self.num_cls)
    def forward(self, x):
        out = self.base(x)
        return out

使用模块直接生成一个类即可,比如训练的时候:

cnn = RES101()
cnn.train() # 改为训练模式
prediction = cnn(img) #进行预测

目前先写这么多,看过了源码以后感觉写的很好,不仅仅有论文中最基础的部分,还有一些额外的功能,模块的组织也很整齐。

平时使用一般都进行迁移学习,使用的话可以把上述几个类中pretrained=False参数改为True.

实战篇:以上迁移学习代码来自我的一个小项目,验证码识别,地址:https://github.com/pprp/captcha_identify.torch

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!