回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss
回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430 更多 分类专栏: 阅读笔记 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https://blog.csdn.net/clover_my/article/details/90777964 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 机器学习中所有的算法都需要最大化或最小化一个函数,这个函数被称为“目标函数”。其中,我们一般把最小化的一类函数,称为“损失函数”。它能根据预测结果,衡量出模型预测能力的好坏。 在实际应用中,选取损失函数会受到诸多因素的制约,比如是否有异常值、机器学习算法的选择、梯度下降的时间复杂度、求导的难易程度以及预测值的置信度等等。因此,不存在一种损失函数适用于处理所有类型的数据。损失函数大致可分为两类:分类问题的损失函数和回归问题的损失函数。这篇文章介绍不同种类的回归损失函数以及它们的作用。 1、MAE / L1 + MSE / L2 (1)平均绝对误差(MAE / L1) Y轴:MAE损失。X轴:预测值。 平均绝对误差(MAE)是一种用于回归模型的损失函数。MAE是目标值和预测值之差的绝对值之和