Keras MAE和MSE source code

╄→尐↘猪︶ㄣ 提交于 2019-12-01 19:39:55
def mean_squared_error(y_true, y_pred):
    if not K.is_tensor(y_pred):
        y_pred = K.constant(y_pred)
    y_true = K.cast(y_true, y_pred.dtype)
    return K.mean(K.square(y_pred - y_true), axis=-1)


def mean_absolute_error(y_true, y_pred):
    if not K.is_tensor(y_pred):
        y_pred = K.constant(y_pred)
    y_true = K.cast(y_true, y_pred.dtype)
    return K.mean(K.abs(y_pred - y_true), axis=-1)


def mean_absolute_percentage_error(y_true, y_pred):
    if not K.is_tensor(y_pred):
        y_pred = K.constant(y_pred)
    y_true = K.cast(y_true, y_pred.dtype)
    diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true),
                                            K.epsilon(),
                                            None))
    return 100. * K.mean(diff, axis=-1)


def mean_squared_logarithmic_error(y_true, y_pred):
    if not K.is_tensor(y_pred):
        y_pred = K.constant(y_pred)
    y_true = K.cast(y_true, y_pred.dtype)
    first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.)
    second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.)
return K.mean(K.square(first_log - second_log), axis=-1)
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!