def mean_squared_error(y_true, y_pred): if not K.is_tensor(y_pred): y_pred = K.constant(y_pred) y_true = K.cast(y_true, y_pred.dtype) return K.mean(K.square(y_pred - y_true), axis=-1) def mean_absolute_error(y_true, y_pred): if not K.is_tensor(y_pred): y_pred = K.constant(y_pred) y_true = K.cast(y_true, y_pred.dtype) return K.mean(K.abs(y_pred - y_true), axis=-1) def mean_absolute_percentage_error(y_true, y_pred): if not K.is_tensor(y_pred): y_pred = K.constant(y_pred) y_true = K.cast(y_true, y_pred.dtype) diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), None)) return 100. * K.mean(diff, axis=-1) def mean_squared_logarithmic_error(y_true, y_pred): if not K.is_tensor(y_pred): y_pred = K.constant(y_pred) y_true = K.cast(y_true, y_pred.dtype) first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.) second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.) return K.mean(K.square(first_log - second_log), axis=-1)
来源:https://www.cnblogs.com/yaos/p/11715001.html