因子分析和PCA总结
因子分析和 PCA 定义 因子分析就是数据降维工具。 从一组相关变量中 删除冗余或重复 ,把相关的变量放在一个因子中,实在不相关的因子有可能被删掉。 用一组较小的 “ 派生 ” 变量表示相关变量 ,这个派生就是新的因子 。形成彼此相对独立的因素 ,就是说新的因子彼此之间 正交 。 应用 筛选变量。 步骤 3.1 计算所有变量的相关矩阵 3.2 要素提取 ,仅在此处需要使用 PCA 3.3 要素轮换 3.4 就基本因素的数量作出最后决定 3.1 计算所有变量的相关矩阵 构建数据矩阵,该数据矩阵是相关矩阵(矩阵里面全是相关系数), PCA 之后变为因子矩阵。 绝对值大于 0.3 的相关系数表示可接受的相关性 ,即相关系数大于 0.3 则把它们放在一堆。 3.2 要素提取 ,仅在此处需要使用 PCA (当然也有其他方法, 要素提取使用不同方法有不同结果)按照对方差的解释程度排序。 连续分量解释总样本方差的逐渐变小的部分,并且所有的分量彼此不相关。 确定因子数:特征值大于 1 3.3 要素轮换 因素轴转为了让因子之间差距尽量大。 非旋转因素通常不是很容易解释的 ( 比如因素 1与所有变量都相关,因素二与前四个变量相关) 对因素进行旋转,使它们更有意义,更易于解释 (每个变量都与最小数量的因素相关联)。 不同旋转方法会识别不同因素,这与要素提取使用不同方法有不同结果是一样的。 3.4