测不准原理

文献阅读 - MonoLoco与关于Camera Matrix的笔记

牧云@^-^@ 提交于 2019-12-04 14:14:13
目录 概览 HighLights Camera Intrinsic Matrix 笔记 Intrinsic Matrix Task-Error - 不确定性任务下确界的计算 输出假设的Laplace分布 Geometric Baseline 基于纯几何学的参照方法 公式总结 概览 近日在阅读"MonoLoco: Monocular 3D Pedestrian Localization and Uncertainty Estimation"文献,旨在解决 定位图像中行人位置(本质上只预测距离) ,文献主要采用基于开源框架提取 单目视觉图像中 的人体骨架信息,再通过轻量级的全连接神经网络对行人的方位进行预测,并对方位预测的不确定度进行了评估和可视化。 HighLights task-error:task-error是一种确定的不确定性,是由于任务抽象时对有关因素忽略而导致的不可消除误差,可被作为不确定度的 下界 。本文中,基于距离和身高的三角形相似性原理和欧洲人口身高的高斯分布假设,求解了 定位误差(米)的task-error作为不确定判断的下界 。 输出假设的Laplace分布:使用Laplace分布替代高斯分布作为计算数据不确定性(aleatoric uncertainty)的分布,其优势是 基于距离比的分布计算,使得预测对象无论远近,误差都能被合理考虑 ,问题在于

笔记 - 基于贝叶斯网络的不确定估计(从一篇车载视角的行人框预测论文出发)

两盒软妹~` 提交于 2019-11-29 03:14:58
本文的出发点是一篇期刊论文,但集中探讨的是这篇文章中 不确定度估计的原理与过程 ,行文将与之前的文献报告不同。 原文 Bhattacharyya A , Fritz M , Schiele B . Long-Term On-Board Prediction of People in Traffic Scenes under Uncertainty[J]. 2017. 原文的一篇重要引用文献 Kendall A , Gal Y . What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?[J]. 2017. 关键词与基础概念 : 车载视角、行人框预测、认知不确定性、偶然不确定性、采样、伯努利分布与dropout变分推断、蒙特卡洛积分、贝叶斯定理与贝叶斯推断、贝叶斯网络 近日在阅读“Long-Term On-Board Prediction of People in Traffic Scenes Under Uncertainty”,文章所提出的模型功能是基于车载移动视角对行人框位置做出预测,并能够同时评估两类不确定度(模型不确定度,数据不确定度)。 对神经网络的不确定度估计 涉及较多概率论的知识,而且从理论到应用的转化也涉及到使用近似量估计的问题,因此初次接触这部分知识该我带来了不小的挑战