动态规划与0-1背包问题解析
动态规划,作为程序员面试过程中几乎是必考的题目类型,在实际生产应用中也广泛使用。0-1背包问题作为最经典的算法之一,也衍生了很多其他的题目(如找零钱、爬楼梯等leetcode题目)。本人在复习之余,将总结下来的算法常识得以分享: (一)什么是动态规划 作为运筹学的一个分支,动态规划(DP)最早是用于求解决策过程最优化的问题被提出,利用各阶段dp变量之间的关系,逐个求解,最终求得全局最优解的过程。再设计DP算法时,需确认原问题与子问题的解状态,每个状态下的DP值、边界状态值,以及状态转移方程。 此外,不同于分治策略,DP 划分的子问题是有重叠的,解过程中对于重叠的部分只要求解一次,记录下结果,其他子问题直接使用即可,减少了重复计算过程。 另外,DP在求解一个问题最优解的时候,不是固定的计算合并某些子问题的解,而是根据各子问题的解的情况选择其中最优的。即第i个状态的DP值dp[i]可能前i-1个状态( dp[1]、dp[2]、・・・・・・、dp[i-1] )都相关。 (2)子问题重叠性质:先计算子问题的解,再由子问题的解去构造问题的解(由于子问题存在重叠,把子问题解记录下来为下一步使用)。 (二)0-1背包求解思路 ④、确定状态转移方程,如何从一个或多个已知状态求出另一个未知状态的值。(递推型) (三)算法设计 初始状态为dp[0][0]~ dp[0][ V]和 dp[0][0]~