aic

混合高斯模型——学习笔记

可紊 提交于 2020-01-11 02:37:11
极大似然估计与EM算法: 详解EM算法与混合高斯模型(Gaussian mixture model, GMM)_林立民爱洗澡-CSDN博客 https://blog.csdn.net/lin_limin/article/details/81048411 GMM(高斯混合模型)以及简单实现_zjm750617105的专栏-CSDN博客 https://blog.csdn.net/zjm750617105/article/details/5243029 成分数的选择 在一个GMM里,BIC(Bayesian Information Criteria)准则是一种有效的成分数确定方法。注意,如果使用一个 Variational Bayesian Gaussian mixture , 可以避免指定GMM的成分数。 AIC准则 AIC准则是由日本统计学家Akaike与1973年提出的,全称是最小化信息量准则(Akaike Information Criterion)。它是拟合精度和参数个数的加权函数: AIC=2(模型参数的个数)-2ln(模型的极大似然函数) BIC准则 AIC为模型选择提供了有效的规则,但也有不足之处。当样本容量很大时,在AIC准则中拟合误差提供的信息就要受到样本容量的放大,而参数个数的惩罚因子却和样本容量没关系(一直是2),因此当样本容量很大时

R Akaike information criterion,AIC,一个越小越好的指标

江枫思渺然 提交于 2019-12-01 22:02:13
  Akaike information criterion,AIC是什么?一个用来筛选模型的指标。AIC越小模型越好,通常选择AIC最小的模型。第一句话好记,第二句话就呵呵了,小编有时候就会迷惑AIC越大越好还是越小越好。所以,还是要知其所以然的。   在AIC之前,我们需要知道Kullback–Leibler information或 Kullback–Leiblerdistance。对于一批数据,假设存在一个真实的模型f,还有一组可供选择的模型g1、g2、g3…gi,而K-L 距离就是用模型 gi 去估计真实模型 f 过程中损失的信息。可见K-L 距离越小,用模型 gi 估计真实模型 f 损失的信息越少,相应的模型 gi 越好。   然后,问题来了。怎么计算每个模型 gi 和真实模型 f 的距离呢?因为我们不知道真实模型 f,所以没办法直接计算每个模型的K-L距离,但可以通过信息损失函数去估计K-L距离。日本统计学家Akaike发现log似然函数和K-L距离有一定关系,并在1974年提出Akaike information criterion,AIC。通常情况下,AIC定义为:AIC=2k-2ln(L),其中k是模型参数个数,L是似然函数。   -2ln(L)反映模型的拟合情况,当两个模型之间存在较大差异时,差异主要体现在似然函数项-2ln(L),当似然函数差异不显著时

模型选择——AIC&BIC(matlab)

故事扮演 提交于 2019-11-30 02:36:21
在建立ARMA和GARCH模型的时候,我们常常需要涉及到模型阶数(如GARCH(p,q)中p和q)的选择问题,在这里我们使用AIC和BIC两个计算参数进行判断: 什么是AIC和BIC? 两者定义来源于信息准则:研究者通过加入模型复杂度的惩罚项来避免过拟合问题,随后推出了两个优选模型的准则:赤池信息准则(Akaike Information Criterion,AIC)和贝叶斯信息准则(Bayesian Information Criterion,BIC)。 AIC(赤池弘次,1974)的定义为: AIC = 2*N - Ln(L) * 这里N表示 模型参数个数 的个数,L表示模型得出的 似然函数 最优值 所以根据AIC的定义可知,当模型越复杂或者似然函数越小,AIC值越大。而我们的目标一般是选择AIC较小的模型(即希望模型简单,并且模型的拟合度高,其中对参数N的要求表示了我们不希望模型出现过拟合的情况)。 BIC(Schwarz,1978)的定义为: BIC = N*Ln(n) - Ln(L) * 这里N表示 模型参数个数 的个数,L表示模型得出的 似然函数 最优值, n是模型中的 观测值数量 。 从AIC模型中我们可以看到没有考虑观测值数量,从统计学知识中我们可以知道随着观测值数量的增加,误差也可能随之上升,所以BIC中引入了观测值数量对模型进行判断。同AIC,BIC也是越小越好